Publications by authors named "Mahiuddin Ahmed"

Purpose: Many cancer treatments suffer from dose-limiting toxicities to vital organs due to poor therapeutic indices. To overcome these challenges we developed a novel multimerization platform that rapidly removes tumor-targeting proteins from the blood to substantially improve therapeutic index.

Experimental Design: The platform was designed as a fusion of a self-assembling and disassembling (SADA) domain to a tandem single-chain bispecific antibody (BsAb, anti-ganglioside GD2 × anti-DOTA).

View Article and Find Full Text PDF

EBV infection is associated with a number of malignancies of clinical unmet need, including Hodgkin lymphoma, nasopharyngeal carcinoma, gastric cancer, and posttransplant lymphoproliferative disease (PTLD), all of which express the EBV protein latent membrane protein 2A (LMP2A), an antigen that is difficult to target by conventional antibody approaches. To overcome this, we utilized phage display technology and a structure-guided selection strategy to generate human T cell receptor-like (TCR-like) monoclonal antibodies with exquisite specificity for the LMP2A-derived nonamer peptide, C426LGGLLTMV434 (CLG), as presented on HLA-A*02:01. Our lead construct, clone 38, closely mimics the native binding mode of a TCR, recognizing residues at position P3-P8 of the CLG peptide.

View Article and Find Full Text PDF

Engineering potent bispecific antibodies from single-chain variable fragments (scFv) remains difficult due to the inherent instability and insufficient binding of scFv's compared to their parental immunoglobulin format. Previously, we described a scFv-based bispecific antibody (scBA) against disialoganglioside (GD2) based on the anti-GD2 murine 5F11-scFv and the anti-CD3 huOKT3-scFv (5F11-scBA). In this study, we substituted the 5F11-scFv with the higher affinity (13-fold) hu3F8-scFv to form hu3F8-scBA.

View Article and Find Full Text PDF

B7-H3 (CD276) is both an inhibitory ligand for natural killer cells and T cells and a tumor antigen that is widely expressed among human solid tumors. Anti-B7-H3 mouse monoclonal antibody 8H9 has been successfully used for radioimmunotherapy for patients with B7-H3(+) tumors. We present the humanization, affinity maturation, and epitope mapping of 8H9 based on structure determination, modeling, and yeast display methods.

View Article and Find Full Text PDF

The concentrations of 18 different elements (K, Ca, Fe, Cl, P, Zn, S, Mn, Ti, Cr, Rb, Co, Br, Sr, Ru, Si, Ni, and Cu) were analyzed in five selected vegetables through Proton Induced X-ray Emission (PIXE) technique. The objective of this study was to provide updated information on concentrations of elements in vegetables available in the local markets at Savar subdistrict in Bangladesh. These elements were found in varying concentrations in the studied vegetables.

View Article and Find Full Text PDF

Bispecific antibodies (BsAbs) have proven highly efficient T cell recruiters for cancer immunotherapy by virtue of one tumor antigen-reactive single chain variable fragment (scFv) and another that binds CD3. In order to enhance the antitumor potency of these tandem scFv BsAbs (tsc-BsAbs), we exploited the dimerization domain of the human transcription factor HNF1α to enhance the avidity of a tsc-BsAb to the tumor antigen disialoganglioside GD2 while maintaining functional monovalency to CD3 to limit potential toxicity. The dimeric tsc-BsAb showed increased avidity to GD2, enhanced T cell mediated killing of neuroblastoma and melanoma cell lines (32-37 fold), exhibited a near 4-fold improvement in serum half-life, and enhanced tumor ablation in mouse xenograft models.

View Article and Find Full Text PDF

Ganglioside GD2 is highly expressed on neuroectodermal tumors and an attractive therapeutic target for antibodies that have already shown some clinical efficacy. To further improve the current antibodies, which have modest affinity, we sought to improve affinity by using a combined method of random mutagenesis and in silico assisted design to affinity-mature the anti-GD2 monoclonal antibody hu3F8. Using yeast display, mutants in the Fv with enhanced binding over the parental clone were FACS-sorted and cloned.

View Article and Find Full Text PDF

Aβ42 peptides associate into soluble oligomers and protofibrils in the process of forming the amyloid fibrils associated with Alzheimer's disease. The oligomers have been reported to be more toxic to neurons than fibrils, and have been targeted by a wide range of small molecule and peptide inhibitors. With single touch atomic force microscopy (AFM), we show that monomeric Aβ42 forms two distinct types of oligomers, low molecular weight (MW) oligomers with heights of 1-2 nm and high MW oligomers with heights of 3-5 nm.

View Article and Find Full Text PDF

Disialoganglioside GD2 is an important target on several pediatric and adult cancer types including neuroblastoma, retinoblastoma, melanoma, small-cell lung cancer, brain tumors, sarcomas, and cancer stem cells. We have utilized structural and computational methods to refine the framework of humanized monoclonal antibody 3F8, the highest affinity anti-GD2 antibody in clinical development. Two constructs (V3 and V5) were designed to enhance stability and minimize potential immunogenicity.

View Article and Find Full Text PDF

Antibody-based immunotherapy has proven efficacy for patients with high-risk neuroblastoma. However, despite being the most efficient tumoricidal effectors, T cells are underutilized because they lack Fc receptors. Using a monovalent single-chain fragment (ScFv) platform, we engineered tandem scFv bispecific antibodies (BsAbs) that specifically target disialoganglioside (GD2) on tumor cells and CD3 on T cells.

View Article and Find Full Text PDF

Ganglioside GD2 is highly expressed on neuroectoderm-derived tumors and sarcomas, including neuroblastoma, retinoblastoma, melanoma, small cell lung cancer, brain tumors, osteosarcoma, rhabdomyosarcoma, Ewing's sarcoma in children and adolescents, as well as liposarcoma, fibrosarcoma, leiomyosarcoma and other soft tissue sarcomas in adults. Since GD2 expression in normal tissues is restricted to the brain, which is inaccessible to circulating antibodies, and in selected peripheral nerves and melanocytes, it was deemed a suitable target for systemic tumor immunotherapy. Anti-GD2 antibodies have been actively tested in clinical trials for neuroblastoma for over the past two decades, with proven safety and efficacy.

View Article and Find Full Text PDF

Nonpharmacologic, mind-body interventions are used to reduce anxiety in pediatric patients. Anti-ganglioside GD2 monoclonal antibody (anti-GD2 MoAb 3F8) therapy is the standard of care for high-risk neuroblastoma and pain is its major side effect. We performed a retrospective analysis of children undergoing anti-GD2 MoAb 3F8 treatment who received guided meditation.

View Article and Find Full Text PDF

Ganglioside GD2 is a cell surface glycolipid that is highly expressed on cancer cells of neuroectodermal origin, including neuroblastoma, retinoblastoma, melanoma, sarcomas, brain tumors and small cell lung cancer. Monoclonal antibodies (MoAb) that target GD2 have shown clinical efficacy in the treatment of GD2 expressing tumors, and are expected to be the new standard of care for the treatment of pediatric neuroblastoma. In this study, the crystal structure of anti-GD2 murine MoAb 3F8 was solved to 1.

View Article and Find Full Text PDF

Autism is a chronic neurodevelopmental disorder of unknown cause that affects approximately 1-3 percent of children and four times more boys than girls. Its prevalence is global and its social impact is devastating. In autism, the brain is unable to process sensory information normally.

View Article and Find Full Text PDF

A cycle of palmitoylation/depalmitoylation of H-Ras mediates bidirectional trafficking between the Golgi apparatus and the plasma membrane, but nothing is known about how this cycle is regulated. We show that the prolyl isomerase (PI) FKBP12 binds to H-Ras in a palmitoylation-dependent fashion and promotes depalmitoylation. A variety of inhibitors of the PI activity of FKBP12, including FK506, rapamycin, and cycloheximide, increase steady-state palmitoylation.

View Article and Find Full Text PDF

Accumulation of amyloid β-protein (Aβ) into brain parenchymal plaques and the cerebral vasculature is a pathological feature of Alzheimer disease and related disorders. Aβ peptides readily form β-sheet-containing oligomers and fibrils. Previously, we reported a strong interaction between myelin basic protein (MBP) and Aβ peptides that resulted in potent inhibition of fibril assembly (Hoos, M.

View Article and Find Full Text PDF

The amyloid-beta(1-42) (Abeta42) peptide rapidly aggregates to form oligomers, protofibils and fibrils en route to the deposition of amyloid plaques associated with Alzheimer's disease. We show that low-temperature and low-salt conditions can stabilize disc-shaped oligomers (pentamers) that are substantially more toxic to mouse cortical neurons than protofibrils and fibrils. We find that these neurotoxic oligomers do not have the beta-sheet structure characteristic of fibrils.

View Article and Find Full Text PDF

The progressive accumulation of beta-amyloid (Abeta) in senile plaques and in the cerebral vasculature is the hallmark of Alzheimer disease and related disorders. Impaired clearance of Abeta from the brain likely contributes to the prevalent sporadic form of Alzheimer disease. Several major pathways for Abeta clearance include receptor-mediated cellular uptake, blood-brain barrier transport, and direct proteolytic degradation.

View Article and Find Full Text PDF

The deposition of amyloid beta-protein (Abeta) fibrils into plaques within the brain parenchyma and along cerebral blood vessels is a hallmark of Alzheimer's disease. Abeta peptides are produced through the successive cleavage of the Abeta precursor protein by beta- and gamma-secretase, producing peptides between 39 and 43 amino acids in length. The most common of these are Abeta40 (the most abundant) and Abeta42.

View Article and Find Full Text PDF

Bacterial ribonuclease P (RNase P) is a ribonucleoprotein complex composed of one catalytic RNA (PRNA) and one protein subunit (P protein) that together catalyze the 5' maturation of precursor tRNA. High-resolution X-ray crystal structures of the individual P protein and PRNA components from several species have been determined, and structural models of the RNase P holoenzyme have been proposed. However, holoenzyme models have been limited by a lack of distance constraints between P protein and PRNA in the holoenzyme-substrate complex.

View Article and Find Full Text PDF

Deposition of fibrillar amyloid beta-protein (Abeta) in the brain is a prominent pathological feature of Alzheimer disease and related disorders, including familial forms of cerebral amyloid angiopathy (CAA). Mutant forms of Abeta, including Dutch- and Iowa-type Abeta, which are responsible for familial CAA, deposit primarily as fibrillar amyloid along the cerebral vasculature and are either absent or present only as diffuse non-fibrillar plaques in the brain parenchyma. Despite the lack of parenchymal fibril formation in vivo, these CAA mutant Abeta peptides exhibit a markedly increased rate and extent of fibril formation in vitro compared with wild-type Abeta.

View Article and Find Full Text PDF

Amyloid fibrils associated with Alzheimer's disease and a wide range of other neurodegenerative diseases have a cross beta-sheet structure, where main chain hydrogen bonding occurs between beta-strands in the direction of the fibril axis. The surface of the beta-sheet has pronounced ridges and grooves when the individual beta-strands have a parallel orientation and the amino acids are in-register with one another. Here we show that in Abeta amyloid fibrils, Met35 packs against Gly33 in the C-terminus of Abeta40 and against Gly37 in the C-terminus of Abeta42.

View Article and Find Full Text PDF

Soluble oligomers and protofibrils are widely thought to be the toxic forms of the Abeta42 peptide associated with Alzheimer's disease. We have investigated the structure and formation of these assemblies using a new approach in atomic force microscopy (AFM) that yields high-resolution images of hydrated proteins and allows the structure of the smallest molecular weight (MW) oligomers to be observed and characterized. AFM images of monomers, dimers and other low MW oligomers at early incubation times (< 1h) are consistent with a hairpin structure for the monomeric Abeta42 peptide.

View Article and Find Full Text PDF

The regulatory mechanisms of neuropeptide-metabolizing enzymes often play a critical role in the pathogenesis of neuronal damage. A systemic administration of pentylenetetrazol (PTZ), an antagonist of GABA(A) receptor ion channel binding site, causes generalized epilepsy in an animal model. In the present study, we examined the involvement of prolyl oligopeptidase (POP), thimet oligopeptidase/neurolysin (EP 24.

View Article and Find Full Text PDF

The SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) hypothesis suggests that pairs of proteins known as vesicle (v-) SNAREs and target membrane (t-) SNAREs interact specifically to control and mediate intracellular membrane fusion events. Here, cells expressing the interacting domains of v- and t-SNAREs on the cell surface were found to fuse spontaneously, demonstrating that SNAREs are sufficient to fuse biological membranes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionc2nvcee8s6eg55gjcgsfiivlntdjdvbn): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once