Diseases affecting the retina, such as age-related macular degeneration (AMD), diabetic retinopathy, macular edema, and retinal vein occlusions, are currently treated by the intravitreal injection of drug formulations. These disease pathologies are driven by oxidative damage due to chronic high concentrations of reactive oxygen species (ROS) in the retina. Intravitreal injections often induce retinal detachment, intraocular hemorrhage, and endophthalmitis.
View Article and Find Full Text PDFEye injuries due to corneal abrasions, chemical spills, penetrating wounds, and microbial infections cause corneal scarring and opacification that result in impaired vision or blindness. However, presently available eye drop formulations of anti-inflammatory and antibiotic drugs are not effective due to their rapid clearance from the ocular surface or due to drug-related side effects such as cataract formation or increased intraocular pressure. In this article, we presented the development of a dextran sulfate-based polymer wafer (DS-wafer) for the effective modulation of inflammation and fibrosis and demonstrated its efficacy in two corneal injury models: corneal abrasion mouse model and alkali induced ocular burn mouse model.
View Article and Find Full Text PDFDevelopment of inflammation modulating polymer scaffolds for soft tissue repair with minimal postsurgical complications is a compelling clinical need. However, the current standard of care soft tissue repair meshes for hernia repair is highly inflammatory and initiates a dysregulated inflammatory process causing visceral adhesions and postsurgical complications. Herein, the development of an inflammation modulating biomaterial scaffold (bioscaffold) for soft tissue repair is presented.
View Article and Find Full Text PDFCD25 knock-out (CD25KO) mice spontaneously develop Sjögren Syndrome (SS)-like inflammation. We investigated the role of commensal bacteria by comparing CD25KO mice housed in conventional or germ-free conditions. Germ-free CD25KO mice have greater corneal barrier dysfunction, lower goblet cell density, increased total lymphocytic infiltration score, increased expression of IFN-γ, IL-12 and higher a frequency of CD4IFN-γ cells than conventional mice.
View Article and Find Full Text PDFCommensal bacteria play an important role in the formation of the immune system but their role in the maintenance of immune homeostasis at the ocular surface and lacrimal gland remains poorly understood. This study investigated the eye and lacrimal gland phenotype in germ-free and conventional C57BL/6J mice. Our results showed that germ-free mice had significantly greater corneal barrier disruption, greater goblet cell loss, and greater total inflammatory cell and CD4⁺ T cell infiltration within the lacrimal gland compared to the conventionally housed group.
View Article and Find Full Text PDFEpithelial cells are involved in the regulation of innate and adaptive immunity in response to different stresses. The purpose of this study was to investigate if alkali-injured corneal epithelia activate innate immunity through the nucleotide-binding oligomerization domain-containing protein (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway. A unilateral alkali burn (AB) was created in the central cornea of C57BL/6 mice.
View Article and Find Full Text PDFAging is a well-recognized risk factor for dry eye. Interferon-gamma (IFN-γ) has been implicated in conjunctival keratinization and goblet cell loss in dry eye. We investigated the role of IFN-γ in age-related dry eye by evaluating young (8 weeks) and aged (15 months; 15M) C57BL/6 (B6) and IFN-γKO mice.
View Article and Find Full Text PDFPurpose: To investigate the hypothesis that increased interferon-γ (IFN-γ) expression is associated with conjunctival goblet cell loss in subjects with tear dysfunction.
Methods: Goblet cell density (GCD) was measured in impression cytology from the temporal bulbar conjunctiva, and gene expression was measured in cytology samples from the nasal bulbar conjunctiva obtained from 68 subjects, including normal control, meibomian gland disease (MGD), non-Sjögren syndrome (non-SSATD)-, and Sjögren syndrome (SSATD)-associated aqueous tear deficiency. Gene expression was evaluated by real-time PCR.
Acetylcholine is the major excitatory neurotransmitter in the central nervous system of insects. Mutant analysis of the Dalpha7 nicotinic acetylcholine receptor (nAChR) of Drosophila shows that it is required for the giant fiber-mediated escape behavior. The Dalpha7 protein is enriched in the dendrites of the giant fiber, and electrophysiological analysis of the giant fiber circuit showed that sensory input to the giant fiber is disrupted, as is transmission at an identified cholinergic synapse between the peripherally synapsing interneuron and the dorsal lateral muscle motor neuron.
View Article and Find Full Text PDF