Particle accelerators are complex systems that focus, guide, and accelerate intense charged particle beams to high energy. Beam diagnostics present a challenging problem due to limited non-destructive measurements, computationally demanding simulations, and inherent uncertainties in the system. We propose a two-step unsupervised deep learning framework named as Conditional Latent Autoregressive Recurrent Model (CLARM) for learning the spatiotemporal dynamics of charged particles in accelerators.
View Article and Find Full Text PDFStructural Health Monitoring of composite structures is one of the significant challenges faced by the aerospace industry. A combined two-level damage identification viz damage detection and localization is performed in this paper for a composite panel using ultrasonic guided waves. A novel physical knowledge-assisted machine learning technique is proposed in which domain knowledge and expert supervision is utilized to assist the learning process.
View Article and Find Full Text PDF