Publications by authors named "Mahindra Makhija"

Article Synopsis
  • - Acid α-glucosidase (GAA) deficiency leads to Pompe disease, which is characterized by glycogen buildup resulting in varying severity from infantile to adult onset; there is a need for better biomarkers to track treatment effects.
  • - Researchers analyzed exosomes from serum and urine of a Pompe disease mouse model and healthy mice, finding significant differences in the abundance of 113 miRNAs and various proteins, indicating potential biomarkers for the disease.
  • - The study suggests that exosomes could serve as valuable biomarkers for Pompe Disease, and further analysis of miRNA and protein content in these exosomes may provide deeper insights into the disease’s mechanisms.
View Article and Find Full Text PDF

Fragile X syndrome (FXS) is a genetic neurodevelopmental syndrome characterized by increased anxiety, repetitive behaviors, social communication deficits, delayed language development, and abnormal sensory processing. Recently, we have identified electroencephalographic (EEG) biomarkers that are conserved between the mouse model of FXS (Fmr1 KO mice) and humans with FXS. In this study, we test a specific candidate mechanism for engagement of multielectrode array (MEA) EEG biomarkers in the FXS mouse model.

View Article and Find Full Text PDF

Meningioma is the most common primary intracranial tumour, and surgical resection is the main therapeutic option. Merlin is a tumour suppressor protein that is frequently mutated in meningioma. The activity of the E3 ubiquitin ligase complex, CRL4-DCAF1, and the Raf/MEK/ERK scaffold protein Kinase suppressor of Ras 1 (KSR1) are upregulated in Merlin-deficient tumours, which drives tumour growth.

View Article and Find Full Text PDF

Disruption of axonal transport causes a number of rare, inherited axonopathies and is heavily implicated in a wide range of more common neurodegenerative disorders, many of them age-related. Acetylation of α-tubulin is one important regulatory mechanism, influencing microtubule stability and motor protein attachment. Of several strategies so far used to enhance axonal transport, increasing microtubule acetylation through inhibition of the deacetylase enzyme histone deacetylase 6 (HDAC6) has been one of the most effective.

View Article and Find Full Text PDF

This study is based on our attempts to further explore the structure-activity relationship (SAR) of VX-148 (3) in an attempt to identify inosine 5'-mono-phosphate dehydrogenase (IMPDH) inhibitors superior to mycophenolic acid. A five-point pharmacophore developed using structurally diverse, known IMPDH inhibitors guided further design of novel analogs of 3. Several conventional as well as novel medicinal chemistry strategies were tried.

View Article and Find Full Text PDF

IMPDH (Inosine 5'-monophosphate dehydrogenase) catalyzes a rate-limiting step in the de novo biosynthesis of guanine nucleotides. IMPDH inhibition in sensitive cell types (e.g.

View Article and Find Full Text PDF

The arsenal of drugs in the fight against AIDS is rapidly diminishing as the HIV becomes resistant to the available reverse transcriptase and protease inhibitors. After killing millions all over the world, the virus is still on the rampage and hence the pharmaceutical industry is resorting to the development of inhibitors of integrase. This seems to be the last arrow in the quiver of potential drug leads to combat the deadly infection.

View Article and Find Full Text PDF

Purpose: To investigate the correlation between the presence of the inactive cathepsin D (CatD) and retinal changes in mcd2/mcd2 transgenic mice.

Methods: Computational modeling was used to examine whether CatD mutants maintain competitive substrate binding. D407 cells were transfected with pcDNACatDM1 or pcDNACatDM2, containing procathepsin D (pro-CatD) with 6-bp (CatDM1) or 12-bp (CatDM2) deletions, respectively, flanking the pro-CatD cleavage site, and the aspartic protease activity of the transfected cells was measured.

View Article and Find Full Text PDF

Existing AIDS therapies are out of reach for most HIV-infected people in developing countries and, where available, they are limited by their toxicity and their cost. New anti-HIV agents are needed urgently to combat emerging viral resistance and reduce the side effects associated with currently available drugs. Toward this end, LeapFrog, a de novo drug design program was used to design novel, potent, and selective inhibitors of HIV-1 integrase.

View Article and Find Full Text PDF

Three-dimensional quantitative structure-activity relationship (3D QSAR) methods were applied on a series of inhibitors of HIV-1 integrase with respect to their inhibition of 3'-processing and 3'-end joining steps in vitro. The training set consisted of 27 compounds belonging to the class of thiazolothiazepines. The predictive ability of each model was evaluated using test set I consisting of four thiazolothiazepines and test set II comprised of seven compounds belonging to an entirely different structural class of coumarins.

View Article and Find Full Text PDF

Quantitative structure--activity relationship (QSAR) paradigm, using genetic function approximation (GFA) technique was used to examine the correlations between the calculated physicochemical descriptors and the in vitro activities (3'-processing and 3'-strand transfer inhibition) of a series of human immunodeficiency virus type 1 (HIV-1) integrase inhibitors. Depending on the chemical structure, all molecules were divided into two classes---catechols and noncatechols. Eighty-one molecules were used in the present study and they were divided into training set and test set.

View Article and Find Full Text PDF