Publications by authors named "Mahinbanu Mammadli"

Minimal residual disease (MRD) assessment using peripheral blood instead of bone marrow aspirate/biopsy specimen or the biopsy of the cancerous infiltrated by lymphoid malignancies is an emerging technique with enormous interest of research and technological innovation at the current time. In some lymphoid malignancies (particularly ALL), Studies have shown that MRD monitoring of the peripheral blood may be an adequate alternative to frequent BM aspirations. However, additional studies investigating the biology of liquid biopsies in ALL and its potential as an MRD marker in larger patient cohorts in treatment protocols are warranted.

View Article and Find Full Text PDF

The transcription factor T cell factor-1 (TCF-1) is encoded by Tcf7 and plays a significant role in regulating immune responses to cancer and pathogens. TCF-1 plays a central role in CD4 T cell development; however, the biological function of TCF-1 on mature peripheral CD4 T cell-mediated alloimmunity is currently unknown. This report reveals that TCF-1 is critical for mature CD4 T cell stemness and their persistence functions.

View Article and Find Full Text PDF

Regulatory T cells are suppressive immune cells used in various clinical and therapeutic applications. Canonical regulatory T cells express CD4, FOXP3, and CD25, which are considered definitive markers of their regulatory T-cell status when expressed together. However, a subset of noncanonical regulatory T cells expressing only CD4 and FOXP3 have recently been described in some infection contexts.

View Article and Find Full Text PDF

Cancer immunotherapy relies on improving T cell effector functions against malignancies, but despite the identification of several key transcription factors (TFs), the biological functions of these TFs are not entirely understood. We developed and utilized a novel, clinically relevant murine model to dissect the functional properties of crucial T cell transcription factors during anti-tumor responses. Our data showed that the loss of TCF-1 in CD8 T cells also leads to loss of key stimulatory molecules such as CD28.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) play an important role in controlling autoimmunity and limiting tissue damage and inflammation. IL2-inducible T cell kinase (Itk) is part of the Tec family of tyrosine kinases and is a critical component of T cell receptor mediated signaling. Here, we showed that either genetic ablation of Itk signaling or inhibition of Itk signaling pathways resulted in increased frequency of "noncanonical" CD4 CD25 FOXP3 Tregs (ncTregs), as well as of "canonical" CD4 CD25 FOXP3 Tregs (canTregs).

View Article and Find Full Text PDF

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the most widely applied forms of adoptive immunotherapy for the treatment of hematological malignancies. Detrimental graft-versus-host disease (GVHD), but also beneficial graft-versus-leukemia (GVL) effects occurring after allo-HSCT are largely mediated by alloantigen-reactive donor T cells in the graft. Separating GVHD from GVL effects is a formidable challenge, and a greater understanding of donor T cell biology is required to accomplish the uncoupling of GVHD from GVL.

View Article and Find Full Text PDF

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapy for hematological malignancies, due to graft-versus-leukemia (GVL) activity mediated by alloreactive donor T cells. However, graft-versus-host disease (GVHD) is also mediated by these cells. Here, we assessed the effect of attenuating TCR-mediated SLP76:ITK interaction in GVL vs.

View Article and Find Full Text PDF

Allogeneic hematopoietic stem cell transplantation is a potentially curative procedure for many malignant diseases. Donor T cells prevent disease recurrence graft-versus-leukemia (GVL) effect. Donor T cells also contribute to graft-versus-host disease (GVHD), a debilitating and potentially fatal complication.

View Article and Find Full Text PDF

The success of cancer therapies based on allogeneic hematopoietic stem cell transplant relies on the ability to separate graft-versus-host disease (GvHD) from graft-versus-tumor (GVT) responses. Controlling donor T cell migration into peripheral tissues is a viable option to limit unwanted tissue damage, but a lack of specific targets limits progress on this front. Here, we show that the adaptor protein CrkL, but not the closely related family members CrkI or CrkII, is a crucial regulator of T cell migration.

View Article and Find Full Text PDF