For alkali-metal ion-exchanged ZSM-5 zeolites (MZSM-5; M: Li, Na, K, Rb, Cs) the analysis of ion-exchangeable sites was performed by means of a combined method based on IR spectroscopic and calorimetric measurements using CO as the probe molecule. The heat of adsorption of CO was found to be correlated with an IR frequency of stretching vibration of C-O in the adsorbed species. It was revealed that there exists at least two types of sites capable of ion-exchanging; for the lithium ion-exchanged ZSM-5 (LiZSM-5) CO adsorption on each type of site is evaluated to give a set of IR bands and heats of adsorption, 2195 cm(-1) and 49 kJ mol(-1), 2185 cm(-1) and 39 kJ mol(-1) with the aid of the newly developed method utilizing the data obtained from a combined microcalorimetric and IR-spectroscopic study.
View Article and Find Full Text PDFA silver-ion-exchanged HZSM-5 zeolite sample (Ag(H)ZSM-5) evacuated at 573 K exhibited prominent catalytic behavior in the partial oxidation of CH(4) at temperatures above 573 K, exceeding the performance of Ag/SiO(2)Al(2)O(3) and Ag/SiO(2) catalysts. From the infrared (IR) and X-ray absorption fine structure (XAFS) spectra, as well as the dioxygen adsorption measurement, it was concluded that the simultaneous existence of Ag(+) ions and small clusters of Ag particles leads to the partial oxidation of methane. Taking the magnitude of the formation enthalpy (per oxygen atom) of Ag(2)O (DeltaH=26 kJ/mol) into consideration, we propose the interpretation that the dioxygen activated on small Ag metal clusters formed in ZSM-5 elaborates a surface oxide layer on small Ag clusters and the thus-formed species is simultaneously and easily decomposed at 573 K or above, and the oxygen activated in this way on the Ag metal spills over and can react with methane that has been activated by the Ag(+) ions exchanged in ZSM-5, resulting in the high catalytic activity of the Ag(H)ZSM-5 sample in the partial oxidation of methane.
View Article and Find Full Text PDFThree different approaches have been used to characterize the state of exchanged copper ions in copper-ion-exchanged MFI (CuMFI) samples. (1) Two types of an ion-exchangeable site with different adsorption properties for N(2) or CO molecules were identified depending on the pre-treatment temperature (723 or 873 K) of a sample prepared by using an aqueous solution of CuCl(2). (2) The state of the active sites formed by the evacuation of a sample at 873 K that had been prepared using a mixture solution of aqueous NH(4)CH(3)COO and Cu(CH(3)COO)(2) was analysed utilizing both (13)C(18)O and (12)C(16)O to identify the two types of active adsorption sites for CO molecules.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2007
Three kinds of Al-pillared montmorillonite clay minerals (AlPMON) ion-exchanged with cobalt(II), nickel(II), or copper(II) ions were prepared (abbreviated as CoAlPMON, NiAlPMON, or CuAlPMON, respectively). For the 673-K- and 873-K-treated samples, carbon monoxide (CO) adsorption measurement was performed at room temperature under an atmosphere of low CO pressure. The 873-K-treated CuAlPMON sample exhibited more efficient adsorption properties for CO molecules, in comparison with both-temperatures-treated CoAlPMON and NiAlPMON samples and the 673-K-treated CuAlPMON sample.
View Article and Find Full Text PDFCopper ion-exchanged montmorillonite clays, which had been prepared by ion exchange in an aqueous solution of CuCl(2) at a temperature above 323 K, exhibited the characteristic IR band in the region 3360-3310 cm(-1). No such bands were observed for the samples prepared by using different ion-exchange solutions and at different temperatures. From the spectroscopic observations, it was revealed that the ion-exchanged copper ions (Cu(2+)) are in the form of dimerized species by bridging two hydroxyls, [Cu(2+) <(OH(-)(2) > Cu(2+)], in montmorillonite.
View Article and Find Full Text PDFActive reaction centers for ammonia on titanium oxyhydroxide were explored to direct the search for an efficient sol-gel method for the synthesis of a titanium oxynitride (TiO2-xNx) sample with an efficient responsiveness to the visible light constituting a main part of the solar spectrum. The results lead to the conclusion that the site giving IR bands at around 2195 cm(-1) for the adsorbed CO molecules at 300 K is a reactive site and behaves as Lewis acid site in the coordination environment of distorted five-coordinate Ti4+ ions. Ammonia molecules are adsorbed on such a site to form -NH2 and -OH species during the heat treatments at a temperature above 373 K, and they are ultimately incorporated into the TiO2 lattice as nitride through the dehydration at higher temperatures of up to 723 K, resulting in the formation of an anatase type of TiO2-xNx.
View Article and Find Full Text PDFCopper ion-exchanged ZSM-5 samples, prepared using an easy method that takes advantage of microwaves, exhibit a quite peculiar adsorption feature for dinitrogen molecules, in that a large volume of chemisorbed N2 was detected, even at room temperature, and the specificity of the adsorption properties was clarified by comparing with the properties of samples prepared by an ordinary ion-exchange method.
View Article and Find Full Text PDF