Diffuse low-grade gliomas are infiltrative tumors whose margins are not distinguishable from the adjacent healthy brain parenchyma. The aim was to precisely examine the results provided by the intraoperative use of macroscopic fluorescence in diffuse low-grade gliomas and to describe the new fluorescence-based techniques capable of guiding the resection of low-grade gliomas. Only about 20% and 50% of low-grade gliomas are macroscopically fluorescent after 5-amino-levulinic acid (5-ALA) or fluorescein sodium intake, respectively.
View Article and Find Full Text PDFSpectral unmixing designates techniques that allow to decompose measured spectra into linear or non-linear combination of spectra of all targets (endmembers). This technique was initially developed for satellite applications, but it is now also widely used in biomedical applications. However, several drawbacks limit the use of these techniques with standard optical devices like RGB cameras.
View Article and Find Full Text PDFComplementary technique to preoperative fMRI and electrical brain stimulation (EBS) for glioma resection could improve dramatically the surgical procedure and patient care. Intraoperative RGB optical imaging is a technique for localizing functional areas of the human cerebral cortex that can be used during neurosurgical procedures. However, it still lacks robustness to be used with neurosurgical microscopes as a clinical standard.
View Article and Find Full Text PDFThis paper describes OpenSpyrit, an open access and open source ecosystem for reproducible research in hyperspectral single-pixel imaging, composed of SPAS (a Python single-pixel acquisition software), SPYRIT (a Python single-pixel reconstruction toolkit) and SPIHIM (a single-pixel hyperspectral image collection). The proposed OpenSpyrit ecosystem responds to the need for reproducibility and benchmarking in single-pixel imaging by providing open data and open software. The SPIHIM collection, which is the first open-access FAIR dataset for hyperspectral single-pixel imaging, currently includes 140 raw measurements acquired using SPAS and the corresponding hypercubes reconstructed using SPYRIT.
View Article and Find Full Text PDFRGB optical imaging is a marker-free, contactless, and non-invasive technique that is able to monitor hemodynamic brain response following neuronal activation using task-based and resting-state procedures. Magnetic resonance imaging (fMRI) and functional near infra-red spectroscopy (fNIRS) resting-state procedures cannot be used intraoperatively but RGB imaging provides an ideal solution to identify resting-state networks during a neurosurgical operation. We applied resting-state methodologies to intraoperative RGB imaging and evaluated their ability to identify resting-state networks.
View Article and Find Full Text PDFBackground: Non-human primate (NHP) could be an interesting model for osteoarthritis (OA) longitudinal studies but standard medical imaging protocols are not able to acquire sufficiently high-resolution images to depict the thinner cartilage (compared to human) in an context. The aim of this study was thus to develop and validate the acquisition protocols for knee joint examination of NHP using magnetic resonance imaging (MRI) at 1.5 T and X-ray micro-computed tomography arthrography (µCTA).
View Article and Find Full Text PDFGliomas are infiltrative brain tumors with a margin difficult to identify. 5-ALA induced PpIX fluorescence measurements are a clinical standard, but expert-based classification models still lack sensitivity and specificity. Here a fully automatic clustering method is proposed to discriminate glioma margin.
View Article and Find Full Text PDFIntraoperative optical imaging is a localization technique for the functional areas of the human brain cortex during neurosurgical procedures. However, it still lacks robustness to be used as a clinical standard. In particular, new biomarkers of brain functionality with improved sensitivity and specificity are needed.
View Article and Find Full Text PDFGliomas are diffuse and hard to cure brain tumors. A major reason for their aggressive behavior is their property to infiltrate the brain. The gross appearance of the infiltrative component is comparable to normal brain, constituting an obstacle to extended surgical resection.
View Article and Find Full Text PDFIn this paper, we present a motion compensation algorithm dedicated to video processing during neurosurgery. After craniotomy, the brain surface undergoes a repetitive motion due to the cardiac pulsation. This motion as well as potential video camera motion prevent accurate video analysis.
View Article and Find Full Text PDF5-ALA-induced protoporphyrin IX (PpIX) has shown its relevance in medical assisting techniques, notably in the detection of glioma (brain tumors). Validation of instruments on phantoms is mandatory and a standardization procedure has recently been proposed. This procedure yields phantoms recipes to realize a linear relationship between PpIX concentration and fluorescence emission intensity.
View Article and Find Full Text PDF5-ALA-induced protoporphyrin IX (PpIX) fluorescence enables to guiding in intra-operative surgical glioma resection. However at present, it has yet to be shown that this method is able to identify infiltrative component of glioma. In extracted tumor tissues we measured a two-peaked emission in low grade gliomas and in the infiltrative component of glioblastomas due to multiple photochemical states of PpIX.
View Article and Find Full Text PDFWe have coupled a spectrophotometer with a scanning near-field optical microscope to obtain, with a single scan, simultaneously scanning near-field optical microscope fluorescence images at different wavelengths as well as topography and transmission images. Extraction of the fluorescence spectra enabled us to decompose the different wavelengths of the fluorescence signals which normally overlap. We thus obtained images of the different fluorescence emissions of acridine orange bound to single or double stranded nucleic acids in human metaphase chromosomes before and after DNAse I or RNAse A treatment.
View Article and Find Full Text PDF