Publications by authors named "Mahider Tekalgne"

Designing low-cost hybrid electrocatalysts for hydrogen production is of significant importance. Recently, MXene-based materials are being increasingly employed in energy storage devices owing to their layered structure and high electrical conductivity. In this study, we propose a facile hydrothermal strategy for producing WS/TiC nanosheets that function as electrocatalysts in the hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) constitute a class of crystalline porous materials employed in storage and energy conversion applications. MOFs possess characteristics that render them ideal in the preparation of electrocatalysts, and exhibit excellent performance for the hydrogen evolution reaction (HER). Herein, H-Ni/NiO/C catalysts were synthesized from a Ni-based MOF hollow structure via a two-step process involving carbonization and oxidation.

View Article and Find Full Text PDF

Transition metal dichalcogenides (TMDs), transition metal carbides (TMCs), and transition metal oxides (TMOs) have been widely investigated for electrocatalytic applications owing to their abundant active sites, high stability, good conductivity, and various other fascinating properties. Therefore, the synthesis of composites of TMDs, TMCs, and TMOs is a new avenue for the preparation of efficient electrocatalysts. Herein, we propose a novel low-cost and facile method to prepare TMD-TMC-TMO nano-hollow spheres (WS-WC-WO NH) as an efficient catalyst for the hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

P-N heterostructures based on transition-metal dichelcongenides (TMDs) and a conventional semiconductor, such as p-Si, have been considered a promising structure for next-generation electronic devices and applications. However, synthesis of high-quality, wafer-scale TMDs, particularly WS on p-Si, is challenging. Herein, we propose an efficient method to directly grow WS crystals on p-Si via a hybrid thermolysis process.

View Article and Find Full Text PDF

Nanocrystal quantum dots (QDs) provide tunable optoelectronic properties on the basis of their dimension. CdSe QDs, which are size-dependent colloidal nanocrystals, are used for efficient electrochromic devices owing to their unique properties in modulating quantum confinement, resulting in enhanced electron insertion during the electrochromic process. Incorporating a well-known metal oxide electrochromic material such as WO into CdSe QDs enhances the redox process.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0g4jnqip3hok1dnhap8ln7h4td2s9f9j): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once