Electroencephalography (EEG), despite its inherited complexity, is a preferable brain signal for automatic human emotion recognition (ER), which is a challenging machine learning task with emerging applications. In any automatic ER, machine learning (ML) models classify emotions using the extracted features from the EEG signals, and therefore, such feature extraction is a crucial part of ER process. Recently, EEG channel connectivity features have been widely used in ER, where Pearson correlation coefficient (PCC), mutual information (MI), phase-locking value (PLV), and transfer entropy (TE) are well-known methods for connectivity feature map (CFM) construction.
View Article and Find Full Text PDF