Increased expression of cytochrome P450 CYP2C9, together with elevated levels of its products epoxyeicosatrienoic acids (EET), is associated with aggressiveness in cancer. Cytochrome P450 variants and encode proteins with reduced enzymatic activity, and individuals carrying these variants metabolize drugs more slowly than individuals with wild-type , potentially affecting their response to drugs and altering their risk of disease. Although genetic differences in CYP2C9-dependent oxidation of arachidonic acid (AA) have been reported, the roles of CYP2C9*2 and CYP2C9*3 in EET biosynthesis and their relevance to disease are unknown.
View Article and Find Full Text PDFAims/hypothesis: Insulin resistance is frequently associated with hypertension and type 2 diabetes. The cytochrome P450 (CYP) arachidonic acid epoxygenases (CYP2C, CYP2J) and their epoxyeicosatrienoic acid (EET) products lower blood pressure and may also improve glucose homeostasis. However, the direct contribution of endogenous EET production on insulin sensitivity has not been previously investigated.
View Article and Find Full Text PDFIn the kidney, 20-hydroxyeicosatetraenoic acid (20-HETE) is a primary cytochrome P450 4 (Cyp4)-derived eicosanoid that enhances vasoconstriction of renal vessels and induces hypertension, renal tubular cell hypertrophy, and podocyte apoptosis. Hypertension and podocyte injury contribute to diabetic nephropathy and are strong predictors of disease progression. In this study, we defined the mechanisms whereby 20-HETE affects the progression of diabetic nephropathy.
View Article and Find Full Text PDFObjective. Here we tested the role of Glo I in the prevention of advanced glycation end product (AGE) formation in transgenic mouse lenses. Methods.
View Article and Find Full Text PDFAlphaA-crystallin is a molecular chaperone; it prevents aggregation of denaturing proteins. We have previously demonstrated that upon modification by a metabolic alpha-dicarbonyl compound, methylglyoxal (MGO), alphaA-crystallin becomes a better chaperone. AlphaA-crystallin also assists in refolding of denatured proteins.
View Article and Find Full Text PDFalphaA-crystallin is abundant in the lens of the eye and acts as a molecular chaperone by preventing aggregation of denaturing proteins. We previously found that chemical modification of the guanidino group of selected arginine residues by a metabolic alpha-dicarbonyl compound, methylglyoxal (MGO), makes human alphaA-crystallin a better chaperone. Here, we examined how the introduction of additional guanidino groups and modification by MGO influence the structure and chaperone function of alphaA-crystallin.
View Article and Find Full Text PDF