With type 2 diabetes presenting at younger ages, there is a growing need to identify biomarkers of future glucose intolerance. A high (20%) prevalence of glucose intolerance at 18 years was seen in women from the Pune Maternal Nutrition Study (PMNS) birth cohort. We investigated the potential of circulating microRNAs in risk stratification for future pre-diabetes in these women.
View Article and Find Full Text PDFType 1 diabetes (T1D) is an autoimmune disease, where insulin-producing β-cells in the pancreas are inappropriately recognized and destroyed by immune cells. Islet transplantation is the most successful cell-based therapy for T1D individuals who experience frequent and severe life-threatening hypoglycemia. However, this therapy is extremely restricted owing to the limited availability of donor pancreas.
View Article and Find Full Text PDFPeople in developing countries have faced multigenerational undernutrition and are currently undergoing major lifestyle changes, contributing to an epidemic of metabolic diseases, though the underlying mechanisms remain unclear. Using a Wistar rat model of undernutrition over 50 generations, we show that Undernourished rats exhibit low birth-weight, high visceral adiposity (DXA/MRI), and insulin resistance (hyperinsulinemic-euglycemic clamps), compared to age-/gender-matched control rats. Undernourished rats also have higher circulating insulin, homocysteine, endotoxin and leptin levels, lower adiponectin, vitamin B12 and folate levels, and an 8-fold increased susceptibility to Streptozotocin-induced diabetes compared to control rats.
View Article and Find Full Text PDFVisceral adiposity is a risk factor for cardiovascular disorders, type 2 diabetes mellitus (T2D) and associated metabolic diseases. Sub-cutaneous fat is believed to be intrinsically different from visceral fat. To understand molecular mechanisms involved in metabolic advantages of fat transplantation, we studied a rat model of diet-induced adiposity.
View Article and Find Full Text PDF