The stiff human foot enables an efficient push-off when walking or running, and was critical for the evolution of bipedalism. The uniquely arched morphology of the human midfoot is thought to stiffen it, whereas other primates have flat feet that bend severely in the midfoot. However, the relationship between midfoot geometry and stiffness remains debated in foot biomechanics, podiatry and palaeontology.
View Article and Find Full Text PDFHow fish modulate their fin stiffness during locomotive manoeuvres remains unknown. We show that changing the fin's curvature modulates its stiffness. Modelling the fin as bendable bony rays held together by a membrane, we deduce that fin curvature is manifested as a misalignment of the principal bending axes between neighbouring rays.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2008
We examine the probability distribution function (PDF) of the energy injection rate (power) in numerical simulations of stationary two-dimensional (2D) turbulence in the Lagrangian frame. The simulation is designed to mimic an electromagnetically driven fluid layer, a well-documented system for generating 2D turbulence in the laboratory. In our simulations, the forcing and velocity fields are close to Gaussian.
View Article and Find Full Text PDF