Publications by authors named "Mahesh Gudem"

We theoretically propose a multidimensional high-harmonic echo spectroscopy technique which utilizes strong optical fields to resolve coherent electron dynamics spanning an energy range of multiple electronvolts. Using our recently developed semi-perturbative approach, we can describe the coherent valence electron dynamics driven by a sequence of phase-matched and well-separated short few-cycle strong infrared laser pulses. The recombination of tunnel-ionized electrons by each pulse coherently populates the valence states of a molecule, which allows for a direct observation of its dynamics via the high harmonic echo signal.

View Article and Find Full Text PDF

Chemiluminescence is a thermally activated chemical process that emits a photon of light by forming a fraction of products in the electronic excited state. A well-known example of this spectacular phenomenon is the emission of light in the firefly beetle, where the formation of a four-membered cyclic peroxide compound and subsequent dissociation produce a light-emitting product. The smallest cyclic peroxide, dioxetane, also exhibits chemiluminescence but with a low quantum yield as compared to that of firefly dioxetane.

View Article and Find Full Text PDF

The photochemistry of numerous molecular systems is influenced by conical intersections (CIs). These omnipresent nonadiabatic phenomena provide ultra-fast radiationless relaxation channels by creating degeneracies between electronic states and decide over the final photoproducts. In their presence, the Born-Oppenheimer approximation breaks down, and the timescales of the electron and nuclear dynamics become comparable.

View Article and Find Full Text PDF

Triplet-triplet annihilation (TTA) is a spin-allowed conversion of two triplet states into one singlet excited state, which provides an efficient route to generate a photon of higher frequency than the incident light. Multiple energy transfer steps between absorbing (sensitizer) and emitting (annihilator) molecular species are involved in the TTA based photon upconversion process. TTA compounds have recently been studied for solar energy applications, even though the maximum upconversion efficiency of 50 % is yet to be achieved.

View Article and Find Full Text PDF

Many recent experimental ultrafast spectroscopy studies have hinted at non-adiabatic dynamics indicating the existence of conical intersections, but their direct observation remains a challenge. The rapid change of the energy gap between the electronic states complicated their observation by requiring bandwidths of several electron volts. In this manuscript, we propose to use the combined information of different x-ray pump-probe techniques to identify the conical intersection.

View Article and Find Full Text PDF

Strong light-matter coupling provides a new strategy to manipulate the non-adiabatic dynamics of molecules by modifying potential energy surfaces. The vacuum field of nanocavities can couple strongly with the molecular degrees of freedom and form hybrid light-matter states, termed as polaritons or dressed states. The photochemistry of molecules possessing intrinsic conical intersections can be significantly altered by introducing cavity couplings to create new conical intersections or avoided crossings.

View Article and Find Full Text PDF

Perylenediimide (PDI) derivatives are essential organic semiconductor materials in a variety of photofunctional devices. By virtue of the large energy gap between the singlet and triplet excited states (Δ = 1.1 eV), augmentation of the triplet state population in monomeric PDI is a challenging task.

View Article and Find Full Text PDF

By using monosubstituted 2,2'-bipyridine asymmetric ancillary ligands with different electron donor moieties and an arene ligand (-cymene), we successfully designed and synthesized six Ru(II) compounds () that belong to a piano-stool-type system. The NLO properties of the synthesized complexes have been studied in both solution and the solid state. The electronic spectra of these compounds show a broad feature with two absorption bands in the visible window (350-650 nm).

View Article and Find Full Text PDF

Mapping the primary photochemical dynamics and transient intermediates in functional chromophores is vital for crafting archetypal light-harvesting materials. Although the excited state dynamics in 9-acetylanthracene is well explored, the origin of near-quantitative triplet population and the atypical intersystem crossing (ISC) rate as compared with the regioisomeric analogs (1-/2-acetylanthracene) have rarely been scrutinized. We present a comprehensive account of the photoinduced dynamics in three regioisomeric monoacetylanthracenes using ultrafast transient absorption and quantum chemical calculations.

View Article and Find Full Text PDF

The gas phase reaction of nitric oxide with ozone to give chemiluminescence is used extensively for detection of nitrogen oxides. The molecular mechanism of chemiluminescence in this reaction is not known. So far, the only chemiluminescent systems studied in depth are certain cycloperoxides, which emit light following decomposition.

View Article and Find Full Text PDF

o-Nitrobenzyl (oNB) derivatives are widely used photolabile caged compounds in chemical and biological applications. The primary step in the photoinduced deprotection is an excited state intramolecular hydrogen transfer (ESIHT) leading to tautomerization of the oNB compound and subsequent release of the protecting group. The prototype molecule for studying such ESIHT is o-nitrotoluene (oNT), where hydrogen transfers from the methyl to the nitro group.

View Article and Find Full Text PDF

Copper-catalyzed reaction of enynamines with sulfonylazides provides acyclic and cyclic amidines. Nucleophilic addition of the tethered amino group on the in situ generated ketenimine forms a six-membered cyclic zwitterionic intermediate which facilitates migration of the tethered amino group to the C-center giving the acyclic amidine. On the other hand, migration of a substituent on the amino group to C- and C-centers results in the formation of cyclic amidines.

View Article and Find Full Text PDF

In order to understand precise biological roles of sulfur dioxide (SO(2)), reliable SO(2) donors, compounds that produce SO(2) under physiological conditions, are necessary. The design and development of 1-phenyl-benzosultine as an efficient SO(2) donor is reported. This compound undergoes cycloreversion to generate SO(2) upon dissolution in aqueous buffer at 37 °C with a yield of 89% and a half-life of 39 min and shows SO(2)-like biological activity in a DNA cleavage assay.

View Article and Find Full Text PDF