The bioanalysis of drugs that undergo acyl glucuronidation presents an analytical challenge due to poor stability of acyl glucuronide metabolites in biological matrices. The objective of this study was to investigate the impact of back conversion of acyl glucuronide metabolites on drug concentration measurement in bioequivalence (BE) studies submitted to Abbreviated New Drug Applications (ANDAs). The prevalence of several treatments for preventing the back conversion of acyl glucuronide metabolites and the results of incurred sample reanalysis (ISR) were analyzed.
View Article and Find Full Text PDFGlutamate is concentrated into synaptic vesicles (SV) by the vesicular glutamate transporters (VGLUT) 1 and 2. VGLUTs also harbor a Na+/Pi-transport activity when residing at the plasma membrane. Here we aimed to identify whether the diurnal switches of VGLUT1 parallels interactions with or modification of endocytic proteins.
View Article and Find Full Text PDFTobacco products are some of the most commonly used psychoactive drugs worldwide. Besides nicotine, alkaloids in tobacco include cotinine, myosmine, and anatabine. Scientific investigation of these constituents and their contribution to tobacco dependence is less well developed than for nicotine.
View Article and Find Full Text PDFStimulus-reward learning has been heavily linked to the reward-prediction error learning hypothesis and dopaminergic function. However, some evidence suggests dopaminergic function may not strictly underlie reward-prediction error learning, but may be specific to incentive salience attribution. Utilizing a Pavlovian conditioned approach procedure consisting of two stimuli that were equally reward-predictive (both undergoing reward-prediction error learning) but functionally distinct in regard to incentive salience (levers that elicited sign-tracking and tones that elicited goal-tracking), we tested the differential role of D1 and D2 dopamine receptors and nucleus accumbens dopamine in the acquisition of sign- and goal-tracking behavior and their associated conditioned reinforcing value within individuals.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2015
A series of pethidine analogs were synthesized and their affinities for the [(3)H]N-methyl-scopolamine (NMS) binding site on muscarinic acetylcholine receptors (mAChRs) were determined using M1, M3 or M5 human mAChRs expressed by Chinese hamster ovary (CHO) cell membranes. Compound 6b showed the highest binding affinities at M1, M3 and M5 mAChRs (Ki=0.67, 0.
View Article and Find Full Text PDFImpulsivity is a multi-faceted personality construct that plays a prominent role in drug abuse vulnerability. Dysregulation of 5-hydroxytryptamine (serotonin, 5-HT) systems in subregions of the prefrontal cortex has been implicated in impulsivity. Extracellular 5-HT concentrations are regulated by 5-HT transporters (SERTs), indicating that these transporters may be important molecular targets underlying individual differences in impulsivity and drug abuse vulnerability.
View Article and Find Full Text PDFNegative urgency is a facet of impulsivity that reflects mood-based rash action and is associated with various maladaptive behaviors in humans. However, the underlying neural mechanisms of negative urgency are not fully understood. Several brain regions within the mesocorticolimbic pathway, as well as the neurotransmitters dopamine (DA) and serotonin (5-HT), have been implicated in impulsivity.
View Article and Find Full Text PDFRecent studies have reported that rats raised in an enriched condition (EC) have decreased dopamine transporter (DAT) function and expression in medial prefrontal cortex (mPFC), as well as increased d-amphetamine-induced glutamate release in nucleus accumbens compared to rats raised in an isolated condition (IC). In these previous studies, DAT function and expression were evaluated using mPFC pooled from four rats for each condition to obtain kinetic parameters due to sparse DAT expression in mPFC. In contrast, accumbal glutamate release was determined using individual rats.
View Article and Find Full Text PDFEnvironmental factors influence a variety of health-related outcomes. In general, being raised in an environment possessing social, sensory, and motor enrichment reduces the rewarding effects of various drugs, thus protecting against abuse vulnerability. However, in the case of methamphetamine (METH), which acts at the vesicular monoamine transporter 2 (VMAT2) to enhance dopamine release from the cytosol, previous evidence suggests that METH reward may not be altered by environmental enrichment.
View Article and Find Full Text PDFAttention deficit/hyperactivity disorder (ADHD) is attributed to dysfunction of the prefrontal cortex. Methylphenidate, an inhibitor of dopamine and norepinephrine transporters (DAT and NET, respectively), is a standard treatment for ADHD. The Spontaneously Hypertensive Rat (SHR) is a well-established animal model of ADHD.
View Article and Find Full Text PDFRats raised in an isolated condition (IC) are impulsive and hyperactive compared to rats raised in an enriched condition (EC), suggesting that isolation rearing may be a preclinical model of attention-deficit/hyperactivity disorder (ADHD). The current study determined if administration of methylphenidate (MPH), a dopamine transporter (DAT) blocker used in the treatment of ADHD, reduces the hyperactivity observed in IC rats toward levels observed in EC rats. Another goal was to determine if chronic MPH treatment differentially alters DAT function in EC and IC rats in medial prefrontal cortex (mPFC) or orbitofrontal cortex (OFC).
View Article and Find Full Text PDFDrug abuse vulnerability has been linked to sensation seeking (behaviors likely to produce rewards) and impulsivity (behaviors occurring without foresight). Since previous preclinical work has been limited primarily to using single tasks as predictor variables, the present study determined if measuring multiple tasks of sensation seeking and impulsivity would be useful in predicting amphetamine self-administration in rats. Multiple tasks were also used as predictor variables of dopamine transporter function in the medial prefrontal and orbitofrontal cortexes, as these neural systems have been implicated in sensation seeking and impulsivity.
View Article and Find Full Text PDFVulnerability to drug abuse is related to both reward seeking and impulsivity, two constructs thought to have a biological basis in the prefrontal cortex (PFC). This review addresses similarities and differences in neuroanatomy, neurochemistry and behavior associated with PFC function in rodents and humans. Emphasis is placed on monoamine and amino acid neurotransmitter systems located in anatomically distinct subregions: medial prefrontal cortex (mPFC); lateral prefrontal cortex (lPFC); anterior cingulate cortex (ACC); and orbitofrontal cortex (OFC).
View Article and Find Full Text PDFNeurotransmitters are concentrated into synaptic vesicles by VGLUT (vesicular glutamate transporter) or VGAT (vesicular GABA transporter). The number of VGLUTs per vesicle determines the amount of stored neurotransmitter, thereby influencing postsynaptic response. Recently, we described a strong diurnal cycling of the amount of VGLUT1 on synaptic vesicles prepared from whole mouse brain at different times of the day (Yelamanchili, S.
View Article and Find Full Text PDFSynaptic strength depends on the amount of neurotransmitter stored in synaptic vesicles. The vesicular transmitter content has recently been shown to be directly dependent on the expression levels of vesicular neurotransmitter transporters indicating that the transport capacity of synaptic vesicles is a critical determinant for synaptic efficacy. Using synaptic vesicles prepared from whole brain at different times of the day we now show that the amount of vesicular glutamate transporter (VGLUT) 1 undergoes strong diurnal cycling.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2005
RNA interference (RNAi) is a powerful technique for gene silencing, in which the downregulation of mRNA is triggered by short RNAs complementary to a target mRNA sequence, with consequent reduction of the encoded protein. The aim of this study was to test the effects of silencing the expression of the cardiac potassium channel Kv4.3 in a heterologous expression system, in order to investigate the effect of RNAi on channel properties.
View Article and Find Full Text PDF