The p53 tumor suppressor regulates its target genes through sequence-specific binding to DNA response elements (REs). Although numerous p53 REs are established, the thousands more identified by bioinformatics are not easily subjected to comparative functional evaluation. To examine the relationship between RE sequence variation -- including polymorphisms -- and p53 binding, we have developed a multiplex format microsphere assay of protein-DNA binding (MAPD) for p53 in nuclear extracts.
View Article and Find Full Text PDFSequence-specific binding by the human p53 master regulator is critical to its tumor suppressor activity in response to environmental stresses. p53 binds as a tetramer to two decameric half-sites separated by 0-13 nucleotides (nt), originally defined by the consensus RRRCWWGYYY (n = 0-13) RRRCWWGYYY. To better understand the role of sequence, organization, and level of p53 on transactivation at target response elements (REs) by wild type (WT) and mutant p53, we deconstructed the functional p53 canonical consensus sequence using budding yeast and human cell systems.
View Article and Find Full Text PDFConstant neutral loss (CNL) and precursor ion (PI) scan have been widely used for the in vitro screening of glutathione conjugates derived from reactive metabolites, but these two methods are only applicable to triple quadrupole or hybrid triple quadrupole mass spectrometers. Additionally, the success of CNL and PI scanning largely depends on structure and CID fragmentation pathways of GSH conjugates. In the present study, a highly efficient methodology has been developed as an alternative approach for high-throughput screening and structural characterization of reactive metabolites using the linear ion trap mass spectrometer.
View Article and Find Full Text PDFThe most common form of genetic variation, single nucleotide polymorphisms or SNPs, can affect the way an individual responds to the environment and modify disease risk. Although most of the millions of SNPs have little or no effect on gene regulation and protein activity, there are many circumstances where base changes can have deleterious effects. Non-synonymous SNPs that result in amino acid changes in proteins have been studied because of their obvious impact on protein activity.
View Article and Find Full Text PDFIn addition to matrix effects, common interferences observed in liquid chromatography/tandem mass spectrometry (LC/MS/MS) analyses can be caused by the response of drug-related metabolites to the multiple reaction monitoring (MRM) channel of a given drug, as a result of in-source reactions or decomposition of either phase I or II metabolites. However, it has been largely ignored that, for some drugs, metabolism can lead to the formation of isobaric or isomeric metabolites that exhibit the same MRM transitions as parent drugs. The present study describes two examples demonstrating that interference caused by isobaric or isomeric metabolites is a practical issue in analyzing biological samples by LC/MS/MS.
View Article and Find Full Text PDFGlutathione (GSH) has been widely used for in vitro trapping and subsequently detecting reactive metabolites using liquid chromatography-mass spectrometry. A major drawback of GSH is its low trapping efficiency for "hard" reactive metabolites such as reactive aldehydes. In the present study, a bifunctional trapping agent (gamma GSK, gamma-glutamylcysteinlysine) is investigated as an alternative of GSH for simultaneous trapping both "hard" and "soft" reactive metabolites.
View Article and Find Full Text PDFMetabolism and bioactivation of 3-methylindole (3MI) were investigated in human liver microsomes. The metabolism of two deuterium-labeled analogues of 3MI permitted a relatively unambiguous identification of multiple metabolites and glutathione (GSH) adducts of reactive intermediates. A total of eight oxidized metabolites were detected, five of which were assigned as previously identified 3-methyloxindole, 3-hydroxy-3-methylindolenine, 3-hydroxy-3-methyloxindole, 5-hydroxy-3-methylindole, and 6-hydroxy-3-methylindole.
View Article and Find Full Text PDFStable-isotope trapping combined with mass spectrometry (MS) neutral loss scanning has recently been developed as a high-throughput method for the in vitro screening of major reactive metabolites. In fact, detection and identification of minor reactive metabolites are equally important since the minor metabolites, even though at low levels, may be highly reactive and also play an important role in drug-induced adverse reactions. In this study, 2-acetylthiophene, clozapine, troglitazone and 7-methylindole were selected as model compounds to further validate the advantages of this method for rapid detection and structural characterization of minor glutathione (GSH) adducts derived from reactive metabolites.
View Article and Find Full Text PDFIt has previously been proposed that 4-methylphenol (p-cresol) is metabolically activated by oxidation of the methyl group to form a reactive quinone methide. In the present study a new metabolism pathway is elucidated in human liver microsomes. Oxidation of the aromatic ring leads to formation of 4-methyl-ortho-hydroquinone, which is further oxidized to a reactive intermediate, 4-methyl-ortho-benzoquinone.
View Article and Find Full Text PDFWe previously reported a linkage region on chromosome 1p (LOD = 3.41) for genes controlling age at onset (AAO) in Parkinson disease (PD). This region overlaps with the previously reported PARK10 locus.
View Article and Find Full Text PDFGenomic convergence is a multistep approach that combines gene expression with genomic linkage to identify and prioritize susceptibility genes for complex disease. As a first step, we previously performed linkage analysis on 174 multiplex Parkinson's disease (PD) families, identifying five peaks for PD risk and two for genes affecting age at onset (AAO) in PD [Hauser et al., Hum Mol Genet 2003;12:671-677].
View Article and Find Full Text PDFBackground: Parkinson disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra. Genes contributing to rare mendelian forms of PD have been identified, but the genes involved in the more common idiopathic PD are not well understood.
Objectives: To identify genes important to PD pathogenesis using microarrays and to investigate their potential to aid in diagnosing parkinsonism.
Inflammatory processes have been implicated in the cascade of events that lead to nerve cell death. In the nervous system, a number of genes involved in inflammation pathways are regulated post-transcriptionally via the interaction of their mRNAs with specific RNA-binding Hu proteins, the vertebrate homologues of the Drosophila ELAV (for embryonic lethal abnormal vision). The gene encoding ELAVL4, a member of the Hu family of proteins, is located 2 Mb from the chromosome 1p linkage region peak for age-at-onset (AAO) of Parkinson disease (PD) (LOD = 3.
View Article and Find Full Text PDFAge-related macular degeneration (AMD) is a leading cause of visual impairment and blindness in the elderly whose etiology remains largely unknown. Previous studies identified chromosome 1q32 as harboring a susceptibility locus for AMD. We used single-nucleotide polymorphisms to interrogate this region and identified a strongly associated haplotype in two independent data sets.
View Article and Find Full Text PDFCharcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous group of peripheral neuropathies. Different chromosomal loci have been linked with three autosomal dominant, 'intermediate' types of CMT: DI-CMTA, DI-CMTB and DI-CMTC. We refined the locus associated with DI-CMTB on chromosome 19p12-13.
View Article and Find Full Text PDFCullin-dependent ubiquitin ligases regulate a variety of cellular and developmental processes by recruiting specific proteins for ubiquitin-mediated degradation. Cullin proteins form a scaffold for two functional modules: a catalytic module comprised of a small RING domain protein Roc1/Rbx1 and a ubiquitin-conjugating enzyme (E2), and a substrate recruitment module containing one or more proteins that bind to and bring the substrate in proximity to the catalytic module. Here, we present evidence that the three Drosophila Roc proteins are not functionally equivalent.
View Article and Find Full Text PDFThe pathogenic process responsible for the loss of dopaminergic neurons within the substantia nigra of patients with Parkinson disease (PD) is poorly understood. Current research supports the involvement of fibroblast growth factor (FGF20) in the survival of dopaminergic cells. FGF20 is a neurotrophic factor that is preferentially expressed within the substantia nigra of rat brain.
View Article and Find Full Text PDFWe present a multifactorial, multistep approach called genomic convergence that combines gene expression with genomic linkage analysis to identify and prioritize candidate susceptibility genes for Parkinson's disease (PD). To initiate this process, we used serial analysis of gene expression (SAGE) to identify genes expressed in two normal substantia nigras (SN) and adjacent midbrain tissue. This identified over 3700 transcripts, including the three most abundant SAGE tags, which did not correspond to any known genes or ESTs.
View Article and Find Full Text PDFSubstrate specificity of SCF E3 ubiquitin ligases is thought to be determined by the F box protein subunit. Another component of SCF complexes is provided by members of the Roc1/Rbx1/Hrt1 gene family, which encode RING-H2 proteins. Drosophila contains three members of this gene family.
View Article and Find Full Text PDF