Publications by authors named "Maher Assaad"

This research introduces a new designing process and analysis of an innovative Silicon-on-Insulator Metal-Semiconductor Field-Effect (SOI MESFET) structure that demonstrates improved DC and RF characteristics. The design incorporates several modifications to control and reduce the electric field concentration within the channel. These modifications include relocating the transistor channel to sub-regions near the source and drain, adjusting the position of the gate electrode closer to the source, introducing an aluminum layer beneath the channel, and integrating an oxide layer adjacent to the gate.

View Article and Find Full Text PDF

Mechanical ventilation techniques are vital for preserving individuals with a serious condition lives in the prolonged hospitalization unit. Nevertheless, an imbalance amid the hospitalized people demands and the respiratory structure could cause to inconsistencies in the patient's inhalation. To tackle this problem, this study presents an Iterative Learning PID Controller (ILC-PID), a unique current cycle feedback type controller that helps in gaining the correct pressure and volume.

View Article and Find Full Text PDF

Microstrip couplers play a crucial role in signal processing and transmission in various applications, including RF and wireless communication, radar systems, and satellites. In this work, a novel microstrip 180° coupler is designed, fabricated and measured. The layout configuration of this coupler is completely new and different from the previously reported Rat-race, branch-line and directional couplers.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a chronic metabolic condition characterized by high blood glucose levels owing to decreased insulin production or sensitivity. Current diagnostic approaches for gestational diabetes entail intrusive blood tests, which are painful and impractical for regular monitoring. Additionally, typical blood glucose monitoring systems are restricted in their measurement frequency and need finger pricks for blood samples.

View Article and Find Full Text PDF

The development of prostheses and treatments for illnesses and recovery has recently been centered on hardware modeling for various delicate biological components, including the nervous system, brain, eyes, and heart. The retina, being the thinnest and deepest layer of the eye, is of particular interest. In this study, we employ the Nyquist-Based Approximation of Retina Rod Cell (NBAoRRC) approach, which has been adapted to utilize Look-Up Tables (LUTs) rather than original functions, to implement rod cells in the retina using cost-effective hardware.

View Article and Find Full Text PDF

The aim of this study was to find the correlation between failure modes and acoustic emission (AE) events in a comprehensive range of thin-ply pseudo-ductile hybrid composite laminates when loaded under uniaxial tension. The investigated hybrid laminates were Unidirectional (UD), Quasi-Isotropic (QI) and open-hole QI configurations composed of S-glass and several thin carbon prepregs. The laminates exhibited stress-strain responses that follow the elastic-yielding-hardening pattern commonly observed in ductile metals.

View Article and Find Full Text PDF

Background: In the diagnosis and primary health care of an individual, estimation of the pulse rate and blood oxygen saturation (SpO2) is critical. The pulse rate and SpO2 are determined by methods including photoplethysmography (iPPG), light spectroscopy, and pulse oximetry. These devices need to be compact, non-contact, and noninvasive for real-time health monitoring.

View Article and Find Full Text PDF

This paper proposes a novel hybrid arithmetic-trigonometric optimization algorithm (ATOA) using different trigonometric functions for complex and continuously evolving real-time problems. The proposed algorithm adopts different trigonometric functions, namely sin, cos, and tan, with the conventional sine cosine algorithm (SCA) and arithmetic optimization algorithm (AOA) to improve the convergence rate and optimal search area in the exploration and exploitation phases. The proposed algorithm is simulated with 33 distinct optimization test problems consisting of multiple dimensions to showcase the effectiveness of ATOA.

View Article and Find Full Text PDF

The determination and qualification of sugars in fruits are important for quality control and assurance of horticultural produce. The sugars determine the sweetness levels in fruits. The requirement for a universal technique that is also robust to predict the sweetness of the fruit in a non-destructive fashion is immense.

View Article and Find Full Text PDF