Publications by authors named "Mahendran Radhakrishnan"

Background: Sesame is a traditional oilseed comprising essential amino acids. However, the presence of allergens in sesame is a significant problem in its consumption; thus, this study attempted to reduce these allergens in sesame oilseeds.

Objective: The present study aimed to evaluate the effect of cold plasma processing on structural changes in proteins, and thereby the alteration of allergenicity in sesame milk.

View Article and Find Full Text PDF

Cereal-based functional foods with shape-changing (four-dimensional [4D]) properties is a novel approach in the current scenario. The main objective of the research is to develop a bioactive compound incorporated in flat two-dimensional xerogel and its hydromorphic three-dimensional shape transformation. The spray-dried curcumin at three different concentrations was incorporated with hydrogel (wheat-barley flour 8%), and flat xerogel was formed by sessile drop drying at 30°C and 78% relative humidity.

View Article and Find Full Text PDF

Food hydrogels are important materials having great scientific interest due to biocompatibility, safety and environment-friendly characteristics. In the food industry, hydrogels are widely used due to their three-dimensional crosslinked networks. Furthermore, they have attracted great attention due to their wide range of applications in the food industry, such as fat replacers, encapsulating agents, target delivery vehicles, and many more.

View Article and Find Full Text PDF

Management of stored product insects is a major concern and widely researched topic in the food and grain processing and storage industry. In the scenario of estimated utilization of produces exceeding the production, postharvest losses should be properly controlled to feed the growing population. The prevailing disinfestation techniques are forced to meet regulatory standards and market demands.

View Article and Find Full Text PDF

Pesticide residues in the food above the maximum permissible residual limit (MRL) for safe consumption are a severe concern today. Though unit operations employed in domestic and industrial-scale processing of foods such as high-temperature decontamination and chemical washings degrade the agrochemicals and reduce toxicity, eliminating pesticides from the fresh and raw fruits and vegetables with the retainment of nutritional and organoleptic attributes demand appropriate non-thermal technologies. In this review, the potential of novel technologies like the pulsed electric field, high-pressure processing, irradiation, ozone, ultrasonication, and cold plasma for the reduction of pesticides in fruits and vegetables have been discussed in terms of their mechanism of action, playing around factors, advantages, and limitations.

View Article and Find Full Text PDF