A well-developed-multiwall carbon nanotube (f-MWCNT)/biphasic calcium phosphate (BCP) composites were synthesized using ultrasonication method for orthopedic implantation applications. The formation of composites and its phase was confirmed by using X-ray diffraction. The presence of various functional groups was identified by using Fourier transform infra-red (FT-IR) spectroscopy.
View Article and Find Full Text PDFThe doping of biologically meaningful ions into biphasic calcium phosphate (BCP) bioceramics, which exhibit biocompatibility with human body parts, has led to their effective use in biomedical applications in recent years. Doping with metal ions while changing the characteristics of the dopant ions, an arrangement of various ions in the Ca/P crystal structure. In our work, small-diameter vascular stents based on BCP and biologically appropriate ion substitute-BCP bioceramic materials were developed for cardiovascular applications.
View Article and Find Full Text PDFMesoporous silica network nanotubes were fabricated using both organic and inorganic templates such as citric acid (CA), cetyltrimethylammonium bromide (CTAB), and sodium bicarbonate (SBC). The phase analysis of synthesized silica network was confirmed by X-ray diffractometer (XRD) analysis, and the present functional groups were revealed by Fourier Transform Infrared Spectroscopy (FTIR) and the formation of tubular morphology was analyzed by transmission electron microscopy (TEM). The mesoporous nature of each template sample was studied using Brunauer-Emmett-Teller (BET) instrument.
View Article and Find Full Text PDF