The fundamental factors contributing toward the stereoselectivity in organocatalyzed asymmetric Michael reaction between aldehydes (propanal and 3-phenyl propanal) and methyl vinyl ketone (MVK) are established by using density functional theory methods. Three of the most commonly employed α-substituted pyrrolidine organocatalysts are examined. Several key stereochemical modes of addition between (i) a model enamine or (ii) pyrrolidine enamines derived from aldehydes and secondary amine to MVK are examined.
View Article and Find Full Text PDFThe mechanism of the organocatalyzed Michael addition between propanal and methyl vinyl ketone is investigated using the density functional and ab intio methods. Different modes of substrate activation offered by a secondary amine (pyrrolidine) organocatalyst are reported. The electrophilic activation of enone (P-I) through the formation of an iminium ion, and nucleophilic activation of propanal (P-II) in the form of enamine have been examined by identifying the corresponding transition states.
View Article and Find Full Text PDFA proline-catalyzed asymmetric Michael addition between ketones and trans-beta-nitrostyrene was studied by using the density-functional theory with mPW1PW91 and B3LYP functionals. Improved insight into the enantio- and diastereoselective formation of gamma-nitroketones/-aldehydes is obtained through transition-state analysis. Consideration of the activation parameters obtained from gas-phase calculations and continuum solvation models failed to reproduce the reported experimental stereoselectivities for the reaction between cyclohexanone and 3-pentanone with trans-beta-nitrostyrene.
View Article and Find Full Text PDFA combined experimental and theoretical study of the Diels-Alder reactions between 2-trimethylsiloxy-1,3-cyclohexadienes (2-11) and (E)-1,4-diphenylbut-2-ene-1,4-dione (1) is reported. Two diastereomeric products, 5-endo-6-exo- (nx) and 5-exo-6-endo- (xn) dibenzoyl derivatives, are possible with symmetric trans-dienophile (1). While in many cases 5-endo-6-exo product is preferred over the corresponding 5-exo-6-endo product, the product ratio nx:xn is found to vary with the position of substituents on the diene.
View Article and Find Full Text PDFThe mechanistic details on enamine formation between dimethylamine and propanal are unraveled using the ab initio and density functional theory methods. The addition of secondary amine to the electrophile and simultaneous proton transfer results in a carbinolamine intermediate, which subsequently undergoes dehydration to form enamine. The direct addition of amine as well as the dehydration of the resulting carbinolamine intermediate is predicted to possess fairly high activation barrier implying that a unimolecular process is unlikely to be responsible for enamine formation.
View Article and Find Full Text PDFA systematic investigation on the cycloreversion reaction of the cycloadduct formed between substituted cyclopentadiene and p-benzoquinone (1-19) is reported at the B3LYP/6-311+G**//B3LYP/6-31G* level of theory. The computed activation barrier exhibits a fairly high sensitivity to the nature of substituents at the C7-position. Gibbs free energy of activation for 1 and 19 are found to be 20.
View Article and Find Full Text PDFWe describe experimental as well as theoretical results to support the role of cyclopropane in a retro Diels-Alder reaction at lower temperature.
View Article and Find Full Text PDFThe isomeric title complexes were obtained in almost equimolar ratio from the reaction of Ru(trpy)Cl3 and L. Crystal structure analyses of the perchlorate hemihydrates, electrochemical and spectroscopic (NMR, UV/VIS, EPR) studies, supported by DFT calculations, reveal distinct differences between the isomeric redox series [1]n+(tetrazine-Nt trans to Cl) and [2]n+(pyrazolyl-Np trans to Cl; n= 0, 1, 2). The latter system with the pi acceptors trpy and tetrazine in the equatorial plane and the pyrazolyl and chloride donors in the axial positions exhibits facilitated oxidation, lower energy MLCT transitions, more balanced chelate coordination, and a higher g anisotropy in the oxidised (RuIII) state.
View Article and Find Full Text PDF