Publications by authors named "Mahendra K Modi"

Unlabelled: (syn. ) is responsible for the blast disease in rice resulting in a greater extent of yield loss. However, some of the cultivars of rice have the ability to survive this devastating infection due to the presence of (resistance) genes.

View Article and Find Full Text PDF

ADP-glucose pyrophosphorylase plays a pivotal role as an allosteric enzyme, essential for starch biosynthesis in plants. The higher plant AGPase comparises of a pair of large and a pair of small subunits to form a heterotetrameric complex. Growing evidence indicates that each subunit plays a distinct role in regulating the underlying mechanism of starch biosynthesis.

View Article and Find Full Text PDF

Alternaria blight is a devastating disease that causes significant crop losses in oilseed Brassicas every year. Adoption of conventional breeding to generate disease-resistant varieties has so far been unsuccessful due to the lack of suitable resistant source germplasms of cultivated spp. A thorough understanding of the molecular basis of resistance, as well as the identification of defense-related genes involved in resistance responses in closely related wild germplasms, would substantially aid in disease management.

View Article and Find Full Text PDF
Article Synopsis
  • Drought stress significantly affects rice production, particularly during the reproductive stage, leading to substantial yield losses, highlighting the need for drought-resistant rice cultivars.
  • The study identified 35 quantitative trait loci (QTLs) related to yield and traits under drought conditions, with 23 QTLs specifically linked to stresses during the reproductive phase, using a detailed genetic mapping approach involving 3417 SNP markers.
  • Major QTLs associated with critical traits like plant height and grain yield were discovered, along with thousands of candidate genes that could help improve drought tolerance in rice varieties.
View Article and Find Full Text PDF

Introduction: The North East (NE) India is rich in biodiversity and also considered as the secondary centre for origin of rice. The NE rice accessions was characterized previously using genetic markers and morphological traits. Simultaneously, genome-wide association studies (GWAS) reveal significant marker-trait associations for the drought tolerance traits.

View Article and Find Full Text PDF

Background: In rice, drought stress at reproductive stage drastically reduces yield, which in turn hampers farmer's efforts towards crop production. The majority of the rice varieties have resistance genes against several abiotic and biotic stresses. Therefore, the traditional landraces were studied to identify QTLs/candidate genes associated with drought tolerance.

View Article and Find Full Text PDF

Introduction: Rice is a major crop in Assam, North East (NE) India. The rice accessions belonging to NE India possess unique traits of breeder's interest, i.e.

View Article and Find Full Text PDF

We employed an Illumina-based high-throughput metagenomics sequencing approach to unveil the rhizosphere and root endosphere microbial community associated with an organically grown Camellia population located at the Experimental Garden for Plantation Crops, Assam (India). The de novo assembled tea root endosphere metagenome contained 24,231 contigs (total 7,771,089 base pairs with an average length of 321 bps), while tea rhizosphere soil metagenome contained 261,965 sequences (total 230,537,174 base pairs, average length 846). The most prominent rhizobacteria belonged to the genera, viz.

View Article and Find Full Text PDF

Background: Plasmodium falciparum is the most dangerous and widespread diseasecausing species of malaria. Falcipain-2 (FP2) of Plasmodium falciparum, is a potential target for antimalarial chemotherapy since it is involved in an essential cellular function such as hemoglobin degradation during the parasite's life cycle. However, despite their central role in the life cycle of the parasite, no commercial drug targeting Falcipain-2 has been developed to date.

View Article and Find Full Text PDF

Eukaryotic translation initiation factors (eIFs) are the group of regulatory proteins that are involved in the initiation of translation events. Among them, eIF4A1, a member of the DEAD-box RNA helicase family, participates in a wide spectrum of activities which include, RNA splicing, ribosome biogenesis, and RNA degradation. It is well known that ATP-binding and subsequent hydrolysis activities are crucial for the functionality of such helicases.

View Article and Find Full Text PDF

Association of bacteria with fungi is a major area of research in infection biology, however, very few strains of bacteria have been reported that can invade and reside within fungal hyphae. Here, we report the characterization of an endofungal bacterium Serratia marcescens D1 from Mucor irregularis SS7 hyphae. Upon re-inoculation, colonization of the endobacterium S.

View Article and Find Full Text PDF

Enzymes from natural sources protect the environment via complex biological mechanisms, which aid in reductive immobilization of toxic metals including chromium. Nevertheless, progress was being made in elucidating high-resolution crystal structures of reductases and their binding with flavin mononucleotide (FMN) to understand the underlying mechanism of chromate reduction. Therefore, herein, we employed molecular dynamics (MD) simulations, principal component analysis (PCA), and binding free energy calculations to understand the dynamics behavior of these enzymes with FMN.

View Article and Find Full Text PDF

Several isolates of Banana bunchy top virus (BBTV) have been reported worldwide. They are members of either the Pacific Indian Ocean (PIO) or the South East Asian (SEA) group. However, there is only one completely sequenced isolate published from the northeastern part of India till date.

View Article and Find Full Text PDF

Differential co-expression is a cutting-edge approach to analyze gene expression data and identify both shared and divergent expression patterns. The availability of high-throughput gene expression datasets and efficient computational approaches have unfolded the opportunity to a systems level understanding of functional genomics of different stresses with respect to plants. We performed the meta-analysis of the available microarray data for reoviridae and sequiviridae infection in rice with the aim to identify the shared gene co-expression profile.

View Article and Find Full Text PDF

Rice grains accumulate starch as their major storage reserve whose biosynthesis is sensitive to heat. ADP-glucose pyrophosphorylase (AGPase) is among the starch biosynthetic enzymes severely affected by heat stress during seed maturation. To increase the heat tolerance of the rice enzyme, we engineered two dominant AGPase subunits expressed in developing endosperm, the large (L2) and small (S2b) subunits of the cytosol-specific AGPase.

View Article and Find Full Text PDF

miRNAs are class of endogenously initiated noncoding RNAs, which are most critical in gene expression and regulation at posttranscriptional level. They do so either by cleavage of the target mRNA or by translational repression. miRNAs are being given enough attention in recent years because of its role in myriad developmental processes including tumorogenesis and host-pathogen interaction.

View Article and Find Full Text PDF

Citronella () is one of the richest sources of high-value isoprenoid aromatic compounds used as flavour, fragrance, and therapeutic elements. These isoprenoid compounds are synthesized by 2 independent pathways: mevalonate pathway and 2-C-methyl-d-erythritol-4-phosphate pathway. Evidence suggests that 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) is a rate-controlling enzyme for the synthesis of variety of isoprenoids.

View Article and Find Full Text PDF

Background: Hormone based birth control often causes various side effects. A recent study revealed that temporary infertility without changing hormone levels can be attained by inhibiting Katanin p60 ATPase-containing subunit A-like 1 protein (KATNAL1) which is critical for sperm maturation in the testes.

Objective: This study aimed at attaining the most energetically stable three dimensional (3D) structure of KATNAL1 protein using comparative modeling followed by screening of a ligand library of known natural spermicidal compounds for their binding affinity with KATNAL1.

View Article and Find Full Text PDF

Advances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella (Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated.

View Article and Find Full Text PDF

3-Hydroxy-3-methylglutaryl-CoA reductases (HMGR) plays an important role in catalyzing the first committed step of isoprenoid biosynthesis in the mevelonic (MVA) pathway (catalyzes the conversion of HMG-CoA to MVA) in plants. The present manuscript reports the full length cDNA cloning of HMGR (CaHMGR, GenBank accession number: KJ939450.2) and its characterization from Centella asiatica.

View Article and Find Full Text PDF

The avirulence gene avrxa5 of bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) recognized by the resistant rice lines having corresponding resistance (xa5) gene in a gene-for-gene manner. We used a combinatorial approach involving protein-protein docking, molecular dynamics (MD) simulations and binding free energy calculations to gain novel insights into the gene-for-gene mechanism that governs the direct interaction of R-Avr protein.

View Article and Find Full Text PDF

Abstract Centella asiatica (Gotu Kola) is a plant that grows in tropical swampy regions of the world and has important medicinal and culinary use. It is often considered as part of Ayurvedic medicine, traditional African medicine, and traditional Chinese medicine. The unavailability of genomics resources is significantly impeding its genetic improvement.

View Article and Find Full Text PDF