Large spin-orbit torques (SOTs) generated by topological materials and heavy metals interfaced with ferromagnets are promising for next-generation magnetic memory and logic devices. SOTs generated from y spin originating from spin Hall and Edelstein effects can realize field-free magnetization switching only when the magnetization and spin are collinear. Here we circumvent the above limitation by utilizing unconventional spins generated in a MnPd thin film grown on an oxidized silicon substrate.
View Article and Find Full Text PDFWe investigated spin-to-charge conversion in sputtered BiSe/CoFeB heterostructures with in-plane magnetization at room temperature. High spin-to-charge conversion voltage signals have been observed at room temperature. The transmission electron microscope images show that the sputtered bismuth selenide thin films are nanogranular in structure.
View Article and Find Full Text PDFThe spin-orbit torque (SOT) that arises from materials with large spin-orbit coupling promises a path for ultralow power and fast magnetic-based storage and computational devices. We investigated the SOT from magnetron-sputtered BiSe thin films in BiSe/CoFeB heterostructures by using d.c.
View Article and Find Full Text PDFDevelopment of novel magnetic materials is of interest for fundamental studies and applications such as spintronics, permanent magnetics, and sensors. We report on the first experimental realization of single element ferromagnetism, since Fe, Co, and Ni, in metastable tetragonal Ru, which has been predicted. Body-centered tetragonal Ru phase is realized by use of strain via seed layer engineering.
View Article and Find Full Text PDF