Despite numerous applications of nanofibrous alginate (Alg) mat, its facile fabrication via electrospinning is still challenging. The low alginate content compared to the carrier polymer and existence of impurities are the main drawbacks of existing approaches. The purpose of this research is both to study and improve alginate electrospinnability by focusing on the effect of inter- and intramolecular hydrogen bonding.
View Article and Find Full Text PDFAlginate as a naturally-derived biomaterial with marine algae sources has gained much attention in both laboratorial and industrial applications due to its structural and chemical resemblance to extracellular matrix (ECM) as well as desirable properties like biocompatibility, biodegradability, processability and low cost. Electrospun alginate nanofibrous scaffolds have found wide applications in biomedical field such as tissue engineering, biomedicine and drug delivery systems. However, electrospinning of alginate is challenging due to the low solubility and high viscosity of high molecular weight alginate, high density of intra- and intermolecular hydrogen bonding, polyelectrolyte nature of aqueous solution and lack of appropriate organic solvent.
View Article and Find Full Text PDF