Eggs represent a significant vehicle for Salmonella Enteritidis with the pathogen being transferred to chicks in the hatchery, or to consumers via table eggs. In the following, the efficacy of a gas-phase hydroxyl-radical process for decontaminating hatchery and table eggs was evaluated. Recovery of Salmonella was maximized through holding eggs in tryptic soy broth containing 20% w/v glycerol for 1 h prior to plating.
View Article and Find Full Text PDFAlthough chemotherapy is regarded as an essential option in cancer treatment, it is still far from being perfect. Inadequate tumor drug concentration and systemic toxicity along with broad biodistribution have diminished the utility of chemotherapy. Tumor-targeting peptide-conjugated multifunctional nanoplatforms have emerged as an effective strategy for site-directed tumor tissues in cancer treatment and imaging.
View Article and Find Full Text PDFThe following reports on the generation of hydroxyl-radical activated water prepared by passing a hydrogen peroxide solution containing Fe(III) catalyst through a UV-C reactor. The activated water was subsequently evaluated for antimicrobial activity against Escherichia coli O157:H7 in suspension or when inoculated onto mung beans. Hydroxyl-radical generation was assessed through the oxidation of methylene blue when reacted with activated water prepared from solutions of different pH (4-10), UV-C dose (32-128 mJ/cm), hydrogen peroxide (0-1000 mg/L) and Fe(III) concentration (0-100 mg/L).
View Article and Find Full Text PDFA continuous Photo-Fenton Advanced-Oxidation-Process (AOP) for reducing the chlorine-demand of spent lettuce wash water was developed based on the generation of hydroxyl-radicals from the UV-C degradation of hydrogen peroxide in the presence of ferric-catalyst. It was found that an interaction between UV-C and hydrogen peroxide or ferric-catalyst concentration was associated with high hydroxyl-radical generation as determined from the oxidation of methylene blue. The optimal AOP treatment was identified as 320 mJ/cm UV-C dose, 9.
View Article and Find Full Text PDFAbstract: Processes based on generating vapor-phase hydroxyl radicals or chlorine radicals were developed for inactivating Listeria monocytogenes on mushrooms without negatively affecting quality. Antimicrobial radicals were generated from the UV-C degradation of hydrogen peroxide or hypochlorite and ozone gas. Response surface modeling was used to identify the interaction among the operating parameters for the hydroxyl radical process: UV-C254nm intensity, hydrogen peroxide concentration, and ozone delivered.
View Article and Find Full Text PDFA gas-phase Advanced Oxidation Process (gAOP) was evaluated for decontaminating N95 and surgical masks. The continuous process was based on the generation of hydroxyl-radicals via the UV-C (254 nm) photo-degradation of hydrogen peroxide and ozone. The decontamination efficacy of the gAOP was dependent on the orientation of the N95 mask passing through the gAOP unit with those positioned horizontally enabling greater exposure to hydroxyl-radicals compared to when arranged vertically.
View Article and Find Full Text PDFA method based on vapor-phase advanced oxidation process (AOP) for decontaminating red or green grapes was validated for inactivating Listeria monocytogenes and spoilage molds. A Central Composite Design (CCD) and Response Surface Methodology (RSM) were applied to determine the contribution of UV-C (254 nm) dose, hydrogen peroxide, and ozone concentration on the lethality toward Aspergillus niger spores (biodensiometer) and changes to the grape quality (firmness and color over 14-day post-treatment storage at 4 °C). A high UV-C dose (>129 mJ/cm ) or >4.
View Article and Find Full Text PDFTwo decontamination methods were evaluated for inactivating a cocktail of Salmonella or Listeria monocytogenes inoculated onto model low moisture foods (LMFs; dried strawberry, dried apple, raisins, chocolate crumb, cornflakes, shell-on or deshelled pistachio nuts). One treatment was based on a peracetic acid-ethanol (PAA-ethanol) sanitizer combination with the other being an Advanced Oxidation Process (AOP) that simultaneously applied UV-C (254 nm), ozone and hydrogen peroxide. The low moisture food was spray inoculated then dried prior to treatment.
View Article and Find Full Text PDF