Defining the immunological landscape of human tissue is an important area of research, but challenges include the impact of tissue disaggregation on cell phenotypes and the low abundance of immune cells in many tissues. Here, we describe methods to troubleshoot and standardize Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) for studies involving enzymatic digestion of human tissue. We tested epitope susceptibility of 92 antibodies commonly used to differentiate immune lineages and cell states on human peripheral blood mononuclear cells following treatment with an enzymatic digestion cocktail used to isolate islets.
View Article and Find Full Text PDFType 1 diabetes results from defects in immune self-tolerance that lead to inflammatory infiltrate in pancreatic islets, beta cell dysfunction and T cell-mediated killing of beta cells. Although therapies that broadly inhibit immunity show promise to mitigate autoinflammatory damage caused by effector T cells, these are unlikely to permanently reset tolerance or promote regeneration of the already diminished pool of beta cells. An emerging concept is that certain populations of immune cells may have the capacity to both promote tolerance and support the restoration of beta cells by supporting proliferation, differentiation and/or regeneration.
View Article and Find Full Text PDFSystemic immunosuppression for the mitigation of immune rejection after organ transplantation causes adverse side effects and constrains the long-term benefits of the transplanted graft. Here we show that protecting the endothelial glycocalyx in vascular allografts via the enzymatic ligation of immunosuppressive glycopolymers under cold-storage conditions attenuates the acute and chronic rejection of the grafts after transplantation in the absence of systemic immunosuppression. In syngeneic and allogeneic mice that received kidney transplants, the steric and immunosuppressive properties of the ligated polymers largely protected the transplanted grafts from ischaemic reperfusion injury, and from immune-cell adhesion and thereby immunocytotoxicity.
View Article and Find Full Text PDFThis study tested the hypothesis that mucosa associated lymphoid tissue 1 (Malt1) deficiency causes osteoporosis in mice by increasing osteoclastogenesis and osteoclast activity. A patient with combined immunodeficiency (CID) caused by MALT1 deficiency had low bone mineral density resulting in multiple low impact fractures that was corrected by hematopoietic stem cell transplant (HSCT). We have reported that Malt1 deficient Mϕs, another myeloid cell type, are hyper-responsive to inflammatory stimuli.
View Article and Find Full Text PDFTherapy-induced presentation of cell surface calreticulin (CRT) is a pro-phagocytic immunogen beneficial for invoking anti-tumor immunity. Here, we characterized the roles of ERp57 and α-integrins as CRT-interacting proteins that coordinately regulate CRT translocation from the ER to the surface during immunogenic cell death. Using T-lymphoblasts as a genetic cell model, we found that drug-induced surface CRT is dependent on ERp57, while drug-induced surface ERp57 is independent of CRT.
View Article and Find Full Text PDFThis study tested the hypothesis that Malt1 deficiency in macrophages contributes to dextran sodium sulfate (DSS)-induced intestinal inflammation in Malt1-deficient mice. In people, combined immunodeficiency caused by a homozygous mutation in the MALT1 gene is associated with increased susceptibility to bacterial infections and chronic inflammation, including severe inflammation along the gastrointestinal tract. The consequences of Malt1 deficiency have largely been attributed to its role in lymphocytes, but Malt1 is also expressed in macrophages, where it is activated downstream of TLR4 and dectin-1.
View Article and Find Full Text PDFCD47 is a cell-surface marker well recognized for its anti-phagocytic functions. As such, an emerging avenue for targeted cancer therapies involves neutralizing the anti-phagocytic function using monoclonal antibodies (mAbs) to enhance tumour cell immunogenicity. A lesser known consequence of CD47 receptor ligation is the direct induction of tumour cell death.
View Article and Find Full Text PDFWe previously showed that APOBEC-mediated mutations in HIV CD8 T-cell epitopes generally reduce recognition by CD8 T cells. Here, we examined this effect in the context of histocompatibility-linked leukocyte antigen (HLA) alleles differentially associated with disease progression rates. For HLA-B57-restricted epitopes, APOBEC mutations generally diminished CD8 T cell recognition.
View Article and Find Full Text PDFDue to constitutive expression in cells targeted by human immunodeficiency virus (HIV), and immediate mode of viral restriction upon HIV entry into the host cell, APOBEC3G (A3G) and APOBEC3F (A3F) have been considered primarily as agents of innate immunity. Recent bioinformatic and mouse model studies hint at the possibility that mutation of the HIV genome by these enzymes may also affect adaptive immunity but whether this occurs in HIV-infected individuals has not been examined. We evaluated whether APOBEC-mediated mutations within common HIV CD8+ T cell epitopes can potentially enhance or diminish activation of HIV-specific CD8+ T cells from infected individuals.
View Article and Find Full Text PDFThe enzyme APOBEC3G (A3G) mutates the human immunodeficiency virus (HIV) genome by converting deoxycytidine (dC) to deoxyuridine (dU) on minus strand viral DNA during reverse transcription. A3G restricts viral propagation by degrading or incapacitating the coding ability of the HIV genome. Thus, this enzyme has been perceived as an innate immune barrier to viral replication whilst adaptive immunity responses escalate to effective levels.
View Article and Find Full Text PDF