NAR Genom Bioinform
September 2024
Unraveling metabolite-protein interactions is key to identifying the mechanisms by which metabolism affects the function of other cellular layers. Despite extensive experimental and computational efforts to identify the regulatory roles of metabolites in interaction with proteins, it remains challenging to achieve a genome-scale coverage of these interactions. Here, we leverage established gold standards for metabolite-protein interactions to train supervised classifiers using features derived from genome-scale metabolic models and matched data on protein abundance and reaction fluxes to distinguish interacting from non-interacting pairs.
View Article and Find Full Text PDFMetabolites, as small molecules, can act not only as substrates to enzymes, but also as effectors of activity of proteins with different functions, thereby affecting various cellular processes. While several experimental techniques have started to catalogue the metabolite-protein interactions (MPIs) present in different cellular contexts, characterizing the functional relevance of MPIs remains a challenging problem. Computational approaches from the constrained-based modeling framework allow for predicting MPIs and integrating their effects in the in silico analysis of metabolic and physiological phenotypes, like cell growth.
View Article and Find Full Text PDF