Publications by authors named "Mahdieh Tajbakhsh"

This manuscript reports an impressive and facile strategy for synthesizing isoxazole derivatives using immobilized Cu (I) in metformin-functionalized β-cyclodextrin as a catalyst. The architecture of this catalyst was characterized by different analytical techniques such as Fourier transform infrared spectroscopy, Thermogravimetric analysis, X-ray diffraction, Field emission scanning electron microscopy, and Energy-dispersive X-ray spectroscopy. The catalyst showed remarkable reusability even after 7 consecutive runs.

View Article and Find Full Text PDF

The synthesis of 1,2,3-triazoles with immobilized Cu(I) in thiosemicarbazide-functionalized β-cyclodextrin (Cu@TSC-β-CD) as a supramolecular catalyst was discussed. The catalyst was characterized by Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) measurements. The catalyst showed high activity (up to 95% yields of triazole products under optimized reaction conditions), providing a one-pot, atom-economic, and highly regioselective green method for 1,2,3-triazoles synthesis in an azide-alkyne cycloaddition (AAC) protocol in water.

View Article and Find Full Text PDF

The functionalized MCM-41-(2-hydroxy-3-propoxypropyl) metformin was prepared and anchored by copper ions to employ as a catalyst for the Ullmann C-X coupling reaction. The catalyst was characterized by Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy measurements and, N adsorption-desorption isotherms. The benefits of this catalyst are the use of inexpensive and non-toxic metformin ligand, easy catalyst/product separation, and catalyst recycling.

View Article and Find Full Text PDF