Background: Light microscopy is often used for malaria diagnosis in the field. However, it is time-consuming and quality of the results depends heavily on the skill of microscopists. Automating malaria light microscopy is a promising solution, but it still remains a challenge and an active area of research.
View Article and Find Full Text PDFComputer-assisted algorithms have become a mainstay of biomedical applications to improve accuracy and reproducibility of repetitive tasks like manual segmentation and annotation. We propose a novel pipeline for red blood cell detection and counting in thin blood smear microscopy images, named RBCNet, using a dual deep learning architecture. RBCNet consists of a U-Net first stage for cell-cluster or superpixel segmentation, followed by a second refinement stage Faster R-CNN for detecting small cell objects within the connected component clusters.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
May 2020
Objective: This work investigates the possibility of automated malaria parasite detection in thick blood smears with smartphones.
Methods: We have developed the first deep learning method that can detect malaria parasites in thick blood smear images and can run on smartphones. Our method consists of two processing steps.
J Med Imaging (Bellingham)
October 2018
Despite the remarkable progress that has been made to reduce global malaria mortality by 29% in the past 5 years, malaria is still a serious global health problem. Inadequate diagnostics is one of the major obstacles in fighting the disease. An automated system for malaria diagnosis can help to make malaria screening faster and more reliable.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
December 2018
Purpose: Tuberculosis is a major global health threat claiming millions of lives each year. While the total number of tuberculosis cases has been decreasing over the last years, the rise of drug-resistant tuberculosis has reduced the chance of controlling the disease. The purpose is to implement a timely diagnosis of drug-resistant tuberculosis, which is essential to administering adequate treatment regimens and stopping the further transmission of drug-resistant tuberculosis.
View Article and Find Full Text PDFMalaria is a blood disease caused by the parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells.
View Article and Find Full Text PDFMalaria remains a major burden on global health, with roughly 200 million cases worldwide and more than 400,000 deaths per year. Besides biomedical research and political efforts, modern information technology is playing a key role in many attempts at fighting the disease. One of the barriers toward a successful mortality reduction has been inadequate malaria diagnosis in particular.
View Article and Find Full Text PDF