Publications by authors named "Mahdi Zamani"

Background: Behcet's disease (BD) is a multisystem disorder prevalent along the historic Silk Road, with Behcet's uveitis (BU) representing a significant complication contributing to disability. Various studies have linked different HLA alleles with BD across diverse populations.

Methods: In this study, we investigated the association between HLA-B51:01/x and HLA-B27/x genotypes with Behcet's uveitis in 50 unrelated Iranian patients diagnosed with Behcet's uveitis, comparing them to a control group of 70 healthy individuals.

View Article and Find Full Text PDF

Alzheimer's disease is a neurodegenerative disorder with polygenic etiology. Genetic risk variants for Alzheimer's disease differ among populations. Thus, discovering them in each population is clinically important.

View Article and Find Full Text PDF

This study is undertaken to evaluate the potential of a commercial molecular sieve to remove diverse sulfur compounds from condensate with high aromatic on an industrial scale. For the first part of this study, the adsorbent is characterized in detail using inductively coupled plasma optical emission spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, and Brunauer-Emmett-Teller analysis. For the second part, dynamic breakthrough experiments on an industrial scale are performed to assess the dynamic adsorption performance of a commercial molecular sieve.

View Article and Find Full Text PDF

Predictive synthesis-structure-property relationships are at the core of materials design for novel applications. In this regard, correlations between the compositional stoichiometry variations and functional properties are essential for enhancing the performance of devices based on these materials. In this work, we investigate the effect of stoichiometry variations and defects on the structural and optoelectronic properties of monocrystalline zinc phosphide (ZnP), a promising compound for photovoltaic applications.

View Article and Find Full Text PDF

Growth approaches that limit the interface area between layers to nanoscale regions are emerging as a promising pathway to limit the interface defect formation due to mismatching lattice parameters or thermal expansion coefficient. Interfacial defect mitigation is of great interest in photovoltaics as it opens up more material combinations for use in devices. Herein, an overview of the vapor-liquid-solid and selective area epitaxy growth approaches applied to zinc phosphide (ZnP), an earth-abundant absorber material, is presented.

View Article and Find Full Text PDF

Citrullinemia type 1 is an autosomal recessive metabolic disease caused by gene mutations encoding argininosuccinic acid synthetase enzyme which is within the pathway of arginine and nitric oxide biosynthesis. Disease confirmation was done by gene mutation analysis using next-generation sequencing, DNA Sanger sequencing. The study group was 17 citrullinemia type 1 patients from 10 unrelated families referred to Iranian National Society for Study on Inborn Errors of Metabolism's clinic between 2008 and 2020.

View Article and Find Full Text PDF

Zinc phosphide, ZnP, is a semiconductor with a high absorption coefficient in the spectral range relevant for single junction photovoltaic applications. It is made of elements abundant in the Earth's crust, opening up a pathway for large deployment of solar cell alternatives to the silicon market. Here we provide a thorough study of the optical properties of single crystalline ZnP thin films grown on (100) InP by molecular beam epitaxy.

View Article and Find Full Text PDF

Zinc phosphide (ZnP) is a II-V compound semiconductor with promising photovoltaic and thermoelectric applications. Its complex structure is susceptible to facile defect formation, which plays a key role in further optimization of the material. Raman spectroscopy can be effectively used for defect characterization.

View Article and Find Full Text PDF

Zinc phosphide (ZnP) is an ideal absorber candidate for solar cells thanks to its direct bandgap, earth-abundance, and optoelectronic characteristics, albeit it has been insufficiently investigated due to limitations in the fabrication of high-quality material. It is possible to overcome these factors by obtaining the material as nanostructures, the selective area epitaxy approach, enabling additional strain relaxation mechanisms and minimizing the interface area. We demonstrate that ZnP nanowires grow mostly defect-free when growth is oriented along the [100] and [110] of the crystal, which is obtained in nanoscale openings along the [110] and [010] on InP(100).

View Article and Find Full Text PDF

Background: Vitiligo is a multifactorial depigmentation condition, which is due to skin melanocyte destruction. Increased expression of HLA class II genes in patients with pre-lesions of Vitiligo suggests a crucial role for the participation of immune response in Vitiligo development. Recent studies progressively focused on HLA-DRB1 and DQB1 genes.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting cognitive function. A number of allelic genes from HLA complex have shown variable associations with AD in different populations. In this study, we investigated the association of DQB1*06:00/x, DRB1*04:00/x, DRB1*15:00/x, and B*07:00/x genotypes with AD and their relevance to the efficacy of rivastigmine treatment in the Iranian population.

View Article and Find Full Text PDF

Large-scale deployment of thin-film photovoltaics will be facilitated through earth-abundant components. Herein, selective area epitaxy and lateral overgrowth epitaxy are explored for the growth of zinc phosphide (ZnP), a promising earth-abundant absorber. The ideal growth conditions are elucidated, and the nucleation of single-crystal nanopyramids that subsequently evolve towards coalesced thin-films is demonstrated.

View Article and Find Full Text PDF

Earth-abundant and low-cost semiconductors, such as zinc phosphide (ZnP), are promising candidates for the next generation photovoltaic applications. However, synthesis on commercially available substrates, which favors the formation of defects, and controllable doping are challenging drawbacks that restrain device performance. Better assessment of relevant properties such as structure, crystal quality and defects will allow faster advancement of ZnP, and in this sense, Raman spectroscopy can play an invaluable role.

View Article and Find Full Text PDF

Zinc phosphide (Zn3P2) nanowires constitute prospective building blocks for next generation solar cells due to the combination of suitable optoelectronic properties and an abundance of the constituting elements in the Earth's crust. The generation of periodic superstructures along the nanowire axis could provide an additional mechanism to tune their functional properties. Here we present the vapour-liquid-solid growth of zinc phosphide superlattices driven by periodic heterotwins.

View Article and Find Full Text PDF

Introduction: Narcolepsy is a chronic neurological and a genetic disorder of autoimmune origin, which is characterized by five main symptoms, including excessive day time sleepiness, sudden loss of muscle tone or cataplexy, sleep paralysis, hypnagogic hallucinations, and disturbed nocturnal sleep. While there are several diagnostic tests for Narcolepsy such as MSLT (mean sleep latency test), polysomnography and low range of hypocretin in cerebrospinal fluid (CSF), sensitivity and specificity in these methodologies are not sufficient enough. Therefore, methods with higher sensitivity for the accurate diagnosis and confirmation of the disease are necessary.

View Article and Find Full Text PDF

The nature of the liquid-solid interface determines the characteristics of a variety of physical phenomena, including catalysis, electrochemistry, lubrication, and crystal growth. Most of the established models for crystal growth are based on macroscopic thermodynamics, neglecting the atomistic nature of the liquid-solid interface. Here, experimental observations and molecular dynamics simulations are employed to identify the 3D nature of an atomic-scale ordering of liquid Ga in contact with solid GaAs in a nanowire growth configuration.

View Article and Find Full Text PDF

Objectives: Rett syndrome is an X linked dominant neurodevelopmental disorder which almost exclusively affects females. The syndrome is usually caused by mutations in gene, which is a nuclear protein that selectively binds CpG dinucleotides in the genome.

Materials & Methods: To provide further insights into the distribution of mutations in gene, we investigated 24 females with clinical characters of Rett syndrome referred to Alzahra University Hospital in Isfahan, Iran during 2015-2017.

View Article and Find Full Text PDF

III-V integration on Si(100) is a challenge: controlled vertical vapor liquid solid nanowire growth on this platform has not been reported so far. Here we demonstrate an atypical GaAs vertical nanostructure on Si(100), coined nanospade, obtained by a nonconventional droplet catalyst pinning. The Ga droplet is positioned at the tip of an ultrathin Si pillar with a radial oxide envelope.

View Article and Find Full Text PDF

Liquid droplets sitting on nanowire (NW) tips constitute the starting point of the vapor-liquid-solid method of NW growth. Shape and volume of the droplet have been linked to a variety of growth phenomena ranging from the modification of growth direction, NW orientation, crystal phase, and even polarity. In this work we focus on numerical and theoretical analysis of the stability of liquid droplets on NW tips, explaining the peculiarity of this condition with respect to the wetting of planar surfaces.

View Article and Find Full Text PDF

Compound semiconductors exhibit an intrinsic polarity, as a consequence of the ionicity of their bonds. Nanowires grow mostly along the (111) direction for energetic reasons. Arsenide and phosphide nanowires grow along (111)B, implying a group V termination of the (111) bilayers.

View Article and Find Full Text PDF

In this paper, we examine information theoretical properties of single-mode fibers in the presence of polarization-induced distortion effects. We derive some capacity results and further obtain several nonergodic achievable rates. In this work, however, mostly linear distortions are considered.

View Article and Find Full Text PDF

Topological qubits based on Majorana Fermions have the potential to revolutionize the emerging field of quantum computing by making information processing significantly more robust to decoherence. Nanowires are a promising medium for hosting these kinds of qubits, though branched nanowires are needed to perform qubit manipulations. Here we report a gold-free templated growth of III-V nanowires by molecular beam epitaxy using an approach that enables patternable and highly regular branched nanowire arrays on a far greater scale than what has been reported thus far.

View Article and Find Full Text PDF

Background & Objectives: Multiple sclerosis (MS) is common in some ethnic groups. Interleukin-10 (IL-10) is a potent anti-inflammatory and immunosuppressive cytokine that may be an important regulator in MS disease pathogenesis. IL-10 promoter includes several single nucleotide polymorphisms and the level of IL-10 expression is related to these polymorphisms.

View Article and Find Full Text PDF

An efficient trellis-based phase noise mitigation algorithm is proposed to highly improve the performance of coherent transmission systems, especially in high order modulation formats. The proposed method targets the coherent optical systems where the performance is limited by various sources of phase noise including laser line-width, fiber non-linearity, and phase noise induced by phase-locked loop. Considering hardware limitations of ultra-high data rate processing in optical systems, a hardware-efficient parallelized and pipelined architecture is utilized.

View Article and Find Full Text PDF

The 22q11.2 locus is known to harbor a high risk for structural variation caused by non-allelic homologous recombination, resulting in deletions and duplications. Here, we describe the first family with one sibling carrying the 22q11 deletion and the other carrying the reciprocal duplication.

View Article and Find Full Text PDF