An accurate and fast method is presented for the analysis of scattering of electromagnetic waves from an array of time-modulated graphene ribbons. We derive a time-domain integral equation for induced surface currents under subwavelength approximation. Using the method of harmonic balance, this equation is solved for a sinusoidal modulation.
View Article and Find Full Text PDFWave-based signal processing has witnessed a significant expansion of interest in a variety of science and engineering disciplines, as it provides new opportunities for achieving high-speed and low-power operations. Although flat optics desires integrable components to perform multiple missions, yet, the current wave-based computational metasurfaces can engineer only the spatial content of the input signal where the processed signal obeys the traditional version of Snell's law. In this paper, we propose a multi-functional metagrating to modulate both spatial and angular properties of the input signal whereby both symmetric and asymmetric optical transfer functions are realized using high-order space harmonics.
View Article and Find Full Text PDFThe recently proposed concept of metagrating enables wavefront manipulation of electromagnetic (EM) waves with unitary efficiency and relatively simple fabrication requirements. Herein, two-dimensional (2D) metagratings composed of a 2D periodic array of rectangular holes in a metallic medium are proposed for diffraction pattern control. We first present an analytical method for diffraction analysis of 2D compound metallic metagrating (a periodic metallic structure with more than one rectangular hole in each period).
View Article and Find Full Text PDFGraphene-based gratings and metagratings have attracted great interest in the last few years because they could realize various multi-functional beam manipulation, such as beam splitting, focusing, and anomalous reflection in the terahertz (THz) regime. However, most of graphene-based metagratings are designed through numerical simulations, which are very time-consuming. In this paper, an accurate analytical method is proposed for diffraction analysis of a perfect electric conductor (PEC)-backed array of graphene ribbons.
View Article and Find Full Text PDFMetagrating is a new concept for wavefront manipulation that, unlike phase gradient metasurfaces, does not suffer from low efficiency and also has a less complicated fabrication process. In this paper, a compound metallic grating (a periodic metallic structure with more than one slit in each period) is proposed for anomalous reflection. We propose an analytical method for analyzing the electromagnetic response of this grating.
View Article and Find Full Text PDFA sheet of graphene under magnetic bias attains anisotropic surface conductivity, opening the door for realizing compact devices such as Faraday rotators, isolators and circulators. In this paper, an accurate and analytical method is proposed for a periodic array of graphene ribbons under magnetic bias. The method is based on integral equations governing the induced surface currents on the coplanar array of graphene ribbons.
View Article and Find Full Text PDFIn this study, by using an equivalent circuit method, a polarization-insensitive terahertz (THz) absorber based on multilayer graphene-based metasurfaces (MGBMs) is systematically designed, providing an extremely broad absorption bandwidth (BW). The proposed absorber is a compact, three-layer structure, comprising square-, cross-, and circular-shaped graphene metasurfaces embedded between three separator dielectrics. The equivalent-conductivity method serves as a parameter retrieval technique to characterize the graphene metasurfaces as the components of the proposed circuit model.
View Article and Find Full Text PDF