The heterogeneity of the solid tumor microenvironment (TME) impairs the therapeutic efficacy of standard therapies and also reduces the infiltration of antitumor immune cells, all of which lead to tumor progression and invasion. In addition, self-renewing cancer stem cells (CSCs) support tumor dormancy, drug resistance, and recurrence, all of which might pose challenges to the eradication of malignant tumor masses with current therapies. Natural forms of oncolytic viruses (OVs) or engineered OVs are known for their potential to directly target and kill tumor cells or indirectly eradicate tumor cells by involving antitumor immune responses, including enhancement of infiltrating antitumor immune cells, induction of immunogenic cell death, and reprogramming of cold TME to an immune-sensitive hot state.
View Article and Find Full Text PDFCutaneous leishmaniasis (CL) is a very common parasitic infection in subtropical areas worldwide. Throughout decades, there have been challenges in vaccine design and vaccination against CL. The present study introduced novel T-cell-based vaccine candidates containing IFN-γ Inducing epitopic fragments from Leishmania major (L.
View Article and Find Full Text PDF