Nanotechnology
January 2025
Surface induced crystallization/amorphization of a Germanium-antimony-tellurium (GST) nanolayer is investigated using the phase field model. A Ginzburg-Landau (GL) equation introduces an external surface layer (ESL) within which the surface energy and elastic properties are properly distributed. Next, the coupled GL and elasticity equations for the crystallization/amorphization are solved.
View Article and Find Full Text PDFIn this paper, we propose a vascular tumor growth model that combines a phase-field tumor model with a phase-field angiogenesis model. By incorporating various tumor cell species, we capture the instabilities of the tumor in the presence of evolving neovasculature. The model not only considers different dynamics of tumor cell phase conversions, movement, and pressure effects but also provides a comprehensive representation of angiogenesis, encompassing chemotaxis of endothelial cells, sprouting, anastomoses, and blood flow in capillaries.
View Article and Find Full Text PDFIn this paper, melting of long Al nanowires is studied using a phase field model in which deviatoric transformation strain described by a kinetic equation produces a promoting driving force for both melting and solidification and consequently, a lower melting temperature is resolved. The coupled system of the Ginzburg-Landau equation for solidification/melting transformation, the kinetic equation for the deviatoric transformation strain and elasticity equations are solved using the COMSOL finite element code to obtain the evolution of melt solution. A deviatoric strain kinetic coefficient is used which results in the same pressure as that calculated with the Laplace equation in a solid neglecting elastic stresses.
View Article and Find Full Text PDFThe phase field approach (PFA) for the interaction of fracture and martensitic phase transformation (PT) is developed, which includes the change in surface energy during PT and the effect of unexplored scale parameters proportional to the ratio of the widths of the crack surface and the phase interface, both at the nanometer scale. The variation of these two parameters causes unexpected qualitative and quantitative effects: shift of PT away from the crack tip, "wetting" of the crack surface by martensite, change in the structure and geometry of the transformed region, crack trajectory, and process of interfacial damage evolution, as well as transformation toughening. The results suggest additional parameters controlling coupled fracture and PTs.
View Article and Find Full Text PDFThere are two main challenges in the discovery of new high pressure phases (HPPs) and transforming this discovery into technologies: finding conditions to synthesize new HPPs and finding ways to reduce the phase transformation (PT) pressure to an economically reasonable level. Based on the results of pressure-shear experiments in the rotational diamond anvil cell (RDAC), superposition of plastic shear on high pressure is a promising way to resolve these problems. However, physical mechanisms behind these phenomena are not yet understood.
View Article and Find Full Text PDFStrong, surprising, and multifaceted effects of the width of the external surface layer Δ(ξ) and internal stresses on surface-induced pretransformation and phase transformations (PTs) are revealed. Using our further developed phase-field approach, we found that above some critical Δ(ξ)(*), a morphological transition from fully transformed layer to lack of surface pretransformation occurs for any transformation strain ε(t). It corresponds to a sharp transition to the universal (independent of ε(t)), strongly increasing the master relationship of the critical thermodynamic driving force for PT X(c) on Δ(ξ).
View Article and Find Full Text PDFThe Ginzburg-Landau theory for multivariant martensitic phase transformations is advanced in three directions: the potential is developed that introduces the surface tension at interfaces; a mixed term in gradient energy is introduced to control the martensite-martensite interface energy independent of that for austenite-martensite; and a noncontradictory expression for variable surface energy is suggested. The problems of surface-induced pretransformation, barrierless multivariant nucleation, and the growth of an embryo in a nanosize sample are solved to elucidate the effect of the above contributions. The obtained results represent an advanced model for coherent interface.
View Article and Find Full Text PDF