Ultra-high dose rate radiotherapy with electrons and protons has shown potential for cancer treatment by effectively targeting tumors while sparing healthy tissues (FLASH effect). This study aimed to investigate the potential FLASH sparing effect of ultra-high-dose rate helium ion irradiation, focusing on acute brain injury and subcutaneous tumor response in a preclinical in vivo setting. Raster-scanned helium ion beams were used to compare the effects of standard dose rate (SDR at 0.
View Article and Find Full Text PDFBackground And Purpose: Knowledge of biological responses to proton therapy (PT) in comparison to X-ray remains in its infancy. Identification of PT specific molecular signals is an important opportunity for the discovery of biomarkers and synergistic drugs to advance clinical application. Since PT is used for the treatment of lymphoma, we report here transcriptomic responses of lymphoma cell lines to PT vs X-ray and identify potential therapeutic targets.
View Article and Find Full Text PDFRadiation-induced normal tissue toxicity often limits the curative treatment of cancer. Moreover, normal tissue relative biological effectiveness data for high-linear energy transfer particles are urgently needed. We propose a strategy based on transcriptome analysis of patient-derived human intestinal organoids (HIO) to determine molecular surrogates for radioresponse of gastrointestinal (GI) organs at risk in a personalized manner.
View Article and Find Full Text PDFMost of the gastrointestinal stromal tumors (GISTs) have gain-of-function mutations in the KIT gene, which can be used as a prognostic marker for the biological behavior of tumors, predictive marker for the response of tyrosine kinase inhibitors, and diagnostic marker. Researchers have focused on PDGFRA mutations because of both their prognostic and predictive potential and DOG1 positivity for diagnosis on GISTs. The aim of this study is to investigate the effect DOG1, PDGFRA, and KIT mutations on the prediction of the outcome for GIST management.
View Article and Find Full Text PDFData regarding the prognostic importance of BRAFV600 tumor mutations in high-risk, non-metastatic, stage 2 and 3 malignant melanoma (MM) patients are controversial. There is not sufficient information in the medical literature regarding the reliability of BRAF mutations as a predictive factor in prognosis and adjuvant treatment decision issues in this patient group. The data of 50 operated high-risk, non-metastatic, stage 2B/2C and 3 MM patients who received high-dose interferon alfa-2b therapy were evaluated retrospectively.
View Article and Find Full Text PDF