Publications by authors named "Mahdi Abdoli Shadbad"

Background: Prolactinoma is the leading type of pituitary adenoma. Aside from the mass-like effect of prolactinoma, its hormonal effect is the main pathological cause of endocrine dysregulation and infertility. The dopamine agonist administration and surgical resection are the current mainstream anti-neoplastic treatments for affected patients; however, tumor fibrosis, tumor invasion, dopamine agonist resistance, and gain prolactinomas are clinical challenges for treating affected patients.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma is a serious brain cancer with poor prognosis, and this study focuses on the role of the microRNA hsa-miR-181a-5p in its development.
  • Researchers used various bioinformatics analysis and lab techniques to explore how hsa-miR-181a-5p affects glioblastoma cells, revealing that its expression is lower in tumor samples.
  • The findings suggest that hsa-miR-181a-5p can inhibit glioblastoma growth by controlling the MAPK signaling pathway, thereby decreasing cell movement, leading to cell death, and modifying gene expression.
View Article and Find Full Text PDF

Background: Medulloblastoma is one of the common primary central nervous system (CNS) malignancies in pediatric patients. The main treatment is surgical resection preceded and/or followed by chemoradiotherapy. However, their serious side effects necessitate a better understanding of medulloblastoma biology to develop novel therapeutic options.

View Article and Find Full Text PDF

As a newly identified regulated cell death, ferroptosis is a metabolically driven process that relies on iron and is associated with polyunsaturated fatty acyl peroxidation, elevated levels of reactive oxygen species (ROS), and mitochondrial damage. This distinct regulated cell death is dysregulated in various cancers; activating ferroptosis in malignant cells increases cancer immunotherapy and chemoradiotherapy responses across different malignancies. Over the last decade, accumulating research has provided evidence of cross-talk between non-coding RNAs (ncRNAs) and competing endogenous RNA (ceRNA) networks and highlighted their significance in developing and progressing malignancies.

View Article and Find Full Text PDF

Glioblastoma multiform (GBM) is a commonly diagnosed brain neoplasm with a poor prognosis. Accumulating evidence has highlighted the significance of microRNA (miR) dysregulation in tumor development and progression. This study investigated the effect of hsa-miR-34a-5p and its combination with temozolomide on GBM, the related molecular mechanisms, and the signaling pathway using and approaches.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) remains an incurable primary brain tumor. CD8 tumor-infiltrating lymphocytes (TILs) can target malignant cells; however, their anti-tumoral immune responses mostly do not lead to GBM rejection in GBM patients. We profiled the sub-populations of tumor-infiltrating CD8 T-cells, i.

View Article and Find Full Text PDF

Background: Glioblastoma multiform (GBM) is among the commonly diagnosed brain malignancies with poor prognosis. CD133 has been introduced as an oncogene in various cancers, like GBM. This study aimed to investigate the significance of CD133 in GBM development using in silico and in vitro techniques.

View Article and Find Full Text PDF

Objectives: Cancerous transformation in mature cystic ovarian teratoma is rare. Herein, we reported a case of squamous cell carcinoma transformation in mature cystic ovarian teratoma and performed an in-depth literature review to highlight the risk factors, prognosis, and suggested treatment for these patients.

Case Presentation: We report a 66-years old postmenopausal woman diagnosed with a 120×90 (mm) mass at the left adnexa compatible with mature cystic ovarian teratoma.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor. Recent findings highlighted the significance of viral microRNAs (miRs) in regulating post-transcriptional mRNA expression in various human conditions. Although HSV1 encodes viral miRs and affects the central nervous system, no study investigated the roles of HSV1-encoding miRs in GBM development.

View Article and Find Full Text PDF

Dendritic cells (DCs) release nanometer-sized membrane vesicles known as dexosomes, containing different molecules, particularly proteins, for presenting antigens, i.e., major histocompatibility complex (MHC)-I/II and CD86.

View Article and Find Full Text PDF

Background: Osteosarcoma is common type of bone cancer; however, the prognosis of patients with metastatic osteosarcoma is poor. As a new inhibitory immune checkpoint molecule, HHLA2 is upregulated in osteosarcoma. Herein, we studied the significance of tumor-intrinsic HHLA2 in MG-63 growth.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a light-based anti-neoplastic therapeutic approach. Growing evidence indicates that combining conventional anti-cancer therapies with PDT can be a promising approach to treat malignancies. Herein, we aimed to investigate anti-cancer effects of the combination treatment of zinc phthalocyanine (ZnPc)-PDT with tamoxifen (TA) on MDA-MB-231 cells (as a triple-negative breast cancer (TNBC) cell line).

View Article and Find Full Text PDF

Breast cancer is one of the most commonly diagnosed types of cancer worldwide. This cancer is treated with various methods like mastectomy, chemotherapy, hormone therapy, and radiotherapy. Among them, targeted therapy, like microRNA (miRNA) replacement therapy, is considered a new approach to treating breast cancer.

View Article and Find Full Text PDF

Background: The programmed death-ligand 1 (PD-L1)/PD-1 axis is one of the well-established inhibitory axes in regulating immune responses. Besides the significance of tumor-intrinsic PD-L1 expression in immune evasion, its oncogenic role has been implicated in various malignancies, like non-small cell lung cancer (NSCLC). As small non-coding RNAs, microRNAs (miRs) have pivotal roles in cancer biology.

View Article and Find Full Text PDF

Dysregulated cell cycle progression has been implicated in cancer development. Cytarabine can interfere with the S phase of the cell cycle; however, tumoral cells can develop chemoresistance. Specific tumor-suppressive microRNAs (miRs) replacement can arrest the cell cycle and enhance chemosensitivity.

View Article and Find Full Text PDF

Background: The combined restoration of tumor-suppressive microRNAs (miRs) has been identified as a promising approach for inhibiting breast cancer development. This study investigated the effect of the combined restoration of miR-424-5p and miR-142-3p on MCF-7 cells and compared the efficacy of the combined therapy with the monotherapies with miR-424-5p and miR-142-3p.

Methods: After transfection of miR-424-5p and miR-142-3p mimics into MCF-7 cells in the combined and separated manner, the proliferation of tumoral cells was assessed by the MTT assay.

View Article and Find Full Text PDF

Background: Overproduction of NLRP3 inflammasome complex is one of the causes of Behcet's disease's (BD) auto-inflammatory nature. The aim of current study was to examine the effect of zinc supplementation on NLRP3 inflammasome expression; as well as clinical manifestations of BD.

Methods: In this double-blind parallel placebo-controlled randomized clinical trial, 50 BD patients were randomly allocated into either zinc gluconate (30 mg/day elemental zinc) or placebo groups for 12 weeks.

View Article and Find Full Text PDF
Article Synopsis
  • Patients with inflammatory bowel disease (IBD), such as ulcerative colitis and Crohn's disease, have a higher risk of developing colorectal cancer (CRC), but the reasons for this link are not fully understood.
  • Researchers conducted detailed computational analyses on gene expression data from IBD and CRC patients, revealing significant clusters of genes and pathways that are distinct to each disease as well as common features between them.
  • The study found that IBD and CRC share increased expression of specific genes and common pathways related to inflammation and immune response, particularly highlighting the importance of IL-4 and IL-13 signaling in the connection between these conditions.
View Article and Find Full Text PDF

Dendritic cells (DCs) can present tumoral antigens to T-cells and stimulate T-cell-mediated anti-tumoral immune responses. In addition to uptaking, processing, and presenting tumoral antigens to T-cells, co-stimulatory signals have to be established between DCs with T-cells to develop anti-tumoral immune responses. However, most of the tumor-infiltrated immune cells are immunosuppressive in the tumor microenvironment (TME), paving the way for immune evasion of tumor cells.

View Article and Find Full Text PDF

Gastric cancer (GC) is one of the most frequently diagnosed malignancies. Recent studies have highlighted cellular immunotherapy (CI) as a promising approach for treating this disease. Among the CI-based approaches, adoptive cell therapy and dendritic cell-based vaccination are commonly studied in preclinical and clinical trials.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS). Dysregulated immune responses have been implicated in MS development. Growing evidence has indicated that inhibitory immune checkpoint molecules can substantially regulate immune responses and maintain immune tolerance.

View Article and Find Full Text PDF

Background: Programmed cell death protein 1 (PD-1) can attenuate chimeric antigen receptor-T (CAR-T) cell-mediated anti-tumoral immune responses. In this regard, co-administration of anti-PD-1 with CAR-T cells and PD-1 gene-editing of CAR-T cells have been suggested to disrupt this inhibitory axis. Herein, we aim to investigate the advantages and disadvantages of these two approaches and propose a novel strategy to ameliorate the prognosis of glioma patients.

View Article and Find Full Text PDF

Background: Investigating the interaction of diabetes with ischemic postconditioning (IPostC)-associated cardioprotection in myocardial ischemia/reperfusion (I/R) damage is of great clinical importance. The present work was designed to determine the possible synergistic effects of alpha-lipoic acid (LA) preconditioning and IPostC on myocardial I/R damage in type-II diabetic rats through modulating autophagy, and the involvement of mitochondrial function.

Methods: High-fat diet/low dose of streptozotocin-induced type-II diabetic model with duration of 12 weeks was used in this study.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) are among the abundant cell populations of the tumor microenvironment (TME), which have pivotal roles in tumor development, chemoresistance, immune evasion, and metastasis. Growing evidence indicates that TAMs and the cross-talk between TAMs and tumoral endothelial cells can substantially contribute to tumor angiogenesis, which is considered a vital process for cancer development. Besides, tumoral endothelial cells can regulate the leukocyte infiltration to the TME in solid cancers and contribute to immune evasion.

View Article and Find Full Text PDF

Autoimmune diseases, especially among young people in the US, are one of the leading causes of morbidity and death. The immune responses are the fundamental pathogenicity of autoimmune disorders. The equilibrium between stimulatory and inhibitory signals is critical for the stimulation, migration, survival, and T cell-related immune responses.

View Article and Find Full Text PDF