Publications by authors named "Mahdavifar S"

In this study, we delve into the intricate ground state phase diagram of anisotropic spin-1/2 XXZ chains under the uniform Gamma interaction. Employing the robust infinite time evolving block decimation (iTEBD) technique and the Lanczos technique, we meticulously obtain the model's ground state properties. Complementing our numerical analysis, we derive analytical approximations through a mean-field framework, transposed into the fermionic representation.

View Article and Find Full Text PDF

Objectives: Several factors such as unavailability of specialists, dental phobia, and financial difficulties may lead to a delay between receiving an oral radiology report and consulting a dentist. The primary aim of this study was to distinguish between high-risk and low-risk oral lesions according to the radiologist's reports of cone beam computed tomography (CBCT) images. Such a facility may be employed by dentist or his/her assistant to make the patient aware of the severity and the grade of the oral lesion and referral for immediate treatment or other follow-up care.

View Article and Find Full Text PDF

Entangled spin coherent states are a type of quantum states that involve two or more spin systems that are correlated in a nonclassical way. These states can improve metrology and information processing, as they can surpass the standard quantum limit, which is the ultimate bound for precision measurements using coherent states. However, finding entangled coherent states in physical systems is challenging because they require precise control and manipulation of the interactions between the modes.

View Article and Find Full Text PDF

In low-dimensional systems, the lack of structural inversion symmetry combined with the spin-orbit coupling gives rise to an anisotropic antisymmetric superexchange known as the Dzyaloshinskii-Moriya interaction (DMI). Various features have been reported due to the presence of DMIs in quantum systems. We here study the one-dimensional spin-1/2 transverse field XY chains with a DMI at zero temperature.

View Article and Find Full Text PDF

We investigate the variation of concurrence in a spin-1/2 transverse field XY chain system in an excited state. Initially, we precisely solve the eigenvalue problem of the system Hamiltonian using the fermionization technique. Subsequently, we calculate the concurrence between nearest-neighbor pairs of spins in all excited states with higher energy than the ground state.

View Article and Find Full Text PDF

We have investigated the spin-1/2 XY frustrated antiferromagnetic Heisenberg honeycomb model, which features an intermediate region in its ground state phase diagram that is not well understood. The two dominant phases in the diagram are the quantum spin-liquid (QSL) and the antiferromagnetic Ising order. Quantum correlations suggest that the QSL phase is likely to exhibit entanglement.

View Article and Find Full Text PDF

Despite the potential deep learning (DL) algorithms have shown, their lack of transparency hinders their widespread application. Extracting if-then rules from deep neural networks is a powerful explanation method to capture nonlinear local behaviors. However, existing rule extraction methods suffer from inefficiency, incomprehensibility, infidelity, and not scaling well.

View Article and Find Full Text PDF

The ground state phase diagram of the dimerized spin-1/2 XX honeycomb model in presence of a transverse magnetic field (TF) is known. With the absence of the magnetic field, two quantum phases, namely, the Néel and the dimerized phases have been identified. Moreover, canted Néel and the paramagnetic (PM) phases also emerge by applying the magnetic field.

View Article and Find Full Text PDF

We consider the ground-state phase diagram of a one-dimensional spin-1/2 XXZ chain with a spatially modulated Dzyaloshinskii-Moriya interaction in the presence of an alternating magnetic field applied along the z[over ̂] axis. The model is studied using the continuum-limit bosonization approach and the finite system exact numerical technique. In the absence of a magnetic field, the ground-state phase diagram of the model includes, besides the ferromagnetic and gapless Luttinger-liquid phases, two gapped phases: the composite (C1) phase characterized by the coexistence of long-range-ordered (LRO) alternating dimerization and spin chirality patterns, and the composite (C2) phase characterized by, in addition to the coexisting spin dimerization and alternating chirality patterns, the presence of LRO antiferromagnetic order.

View Article and Find Full Text PDF

Here we show that, although quantum fidelity can truly identify two quantum phase transitions of a one-dimensional spin-1/2 quantum Ising model with competing nearest and next-nearest neighbor interactions in a transverse magnetic field, it may not be a suitable approach for analyzing its ground-state phase diagram.

View Article and Find Full Text PDF

Ergodicity sits at the heart of the connection between statistical mechanics and dynamics of a physical system. By fixing the initial state of the system into the ground state of the Hamiltonian at zero temperature and tuning a control parameter, we consider the occurrence of the ergodicity with quench dynamics in the one-dimensional (1D) spin-1/2 XY model in a transverse magnetic field. The ground-state phase diagram consists of two ferromagnetic and paramagnetic phases.

View Article and Find Full Text PDF

We develop a real space quantum renormalization group (QRG) to explore a frustrated anisotropic four-leg spin-1/2 nanotube in the thermodynamic limit. We obtain the phase diagram, fixed points, critical points, the scaling of coupling constants and magnetization curves. Our investigation points out that, in the case of strong leg coupling, the diagonal frustrating interaction is marginal under QRG transformations and does not affect the universality class of the model.

View Article and Find Full Text PDF

Quantum phase transition occurs at a quantum critical value of a control parameter such as the magnetic field in the Ising model in a transverse magnetic field (ITF). Recently, it is shown that ramping across the quantum critical point generates non-analytic behaviors in the time evolution of a closed quantum system in the thermodynamic limit at zero temperature. The mentioned phenomenon is called the dynamical quantum phase transition (DQPT).

View Article and Find Full Text PDF

Background: Novel vaccine strategies are required to provide protective immunity in tuberculosis (TB) and prevent development of active disease. We investigated the safety and immunogenicity of a novel TB vaccine candidate, H4:IC31 (AERAS-404) that is composed of a fusion protein of M. tuberculosis antigens Ag85B and TB10.

View Article and Find Full Text PDF

Using one-dimensional spin-1/2 systems as prototypes of quantum many-body systems, we study the emergence of quantum chaos. The main purpose of this work is to answer the following question: how the spin-orbit interaction, as a pure quantum interaction, may lead to the onset of quantum chaos? We consider the three integrable spin-1/2 systems: the Ising, the XX, and the XXZ limits and analyze whether quantum chaos develops or not after the addition of the Dzyaloshinskii-Moriya interaction. We find that depending on the strength of the anisotropy parameter, the answer is positive for the XXZ and Ising models, whereas no such evidence is observed for the XX model.

View Article and Find Full Text PDF

Cytomegalovirus (CMV) infection represents a vital complication after Hematopoietic Stem Cell Transplantation (HSCT). We screened the entire CMV proteome to visualize the humoral target epitope-focus profile in serum after HSCT. IgG profiling from four patient groups (donor and/or recipient +/- for CMV) was performed at 6, 12 and 24 months after HSCT using microarray slides containing 17174 of 15mer-peptides overlapping by 4 aa covering 214 proteins from CMV.

View Article and Find Full Text PDF

We consider the spin-1/2 Heisenberg chain with alternating spin exchange in the presence of additional modulation of exchange on odd bonds with period 3. We study the ground state magnetic phase diagram of this hexamer spin chain in the limit of very strong antiferromagnetic (AF) exchange on odd bonds using the numerical Lanczos method and bosonization approach. In the limit of strong magnetic field commensurate with the dominating AF exchange, the model is mapped onto an effective XXZ Heisenberg chain in the presence of uniform and spatially modulated fields, which is studied using the standard continuum-limit bosonization approach.

View Article and Find Full Text PDF

The effects of a magnetic field (h) and a space modulation (δ) on the magnetic properties of a one-dimensional antiferromagnetic-ferromagnetic Heisenberg spin-1/2 model have been studied by means of numerical exact diagonalization of finite size systems, the nonlinear σ model, and a bosonization approach. The space modulation is considered on the antiferromagnetic couplings. At δ = 0, the model is mapped to a gapless Lüttinger liquid phase by increasing the magnetic field.

View Article and Find Full Text PDF

A more effective vaccine against Mycobacterium tuberculosis is needed, and a number of M. tuberculosis vaccine candidates are currently in preclinical or clinical phase I and II studies. One of the strategies to select M.

View Article and Find Full Text PDF

Identification of major histocompatibility complex (MHC) class II binding peptides is a crucial step in rational vaccine design and immune monitoring. We designed a novel MHC class II molecule-peptide microarray binding assay and evaluated 346 peptides from already identified human immunodeficiency virus (HIV) epitopes and an additional set (n = 206) of 20-mer peptides, overlapping by 15 amino acid residues, from HIV type 1B (HIV-1B) gp160 and Nef as a paradigm. Peptides were attached via the N-terminal part to a linker that covalently binds to the epoxy glass slide.

View Article and Find Full Text PDF

Introduction: Peptide microarray slides usually contain positive control spots to gauge for antibody binding. Unlike the good response on earlier prototype microarrays, human immunoglobulin controls do not function consistently on newer generation slides. This may be due to technical problems in high-density printing or degradation.

View Article and Find Full Text PDF

Background: Serum antibody-based target identification has been used to identify tumor-associated antigens (TAAs) for development of anti-cancer vaccines. A similar approach can be helpful to identify biologically relevant and clinically meaningful targets in M. tuberculosis (MTB) infection for diagnosis or TB vaccine development in clinically well defined populations.

View Article and Find Full Text PDF

The energy gap of the one-dimensional (1D) spin-[Formula: see text] AF (antiferromagnetic) XXZ model in a transverse magnetic field (h) is studied by using the exact diagonalization technique. We have computed the energy gap in the region of anisotropy parameter -1<Δ<1 and in the vicinity of the critical line Δ = -1. By introducing a practical finite-size scaling approach, we have computed the correct critical exponent of the energy gap in good agreement with the field theoretical and spin-wave approaches.

View Article and Find Full Text PDF

Introduction: Within the last decade, the development of antigen microarray slides has enabled the simultaneous measurement of serum reactivity to hundreds of peptides in a single biological sample. Despite this considerable scientific progress, many issues remain regarding the quality, analysis and interpretation of the data these slides produce. There is currently no accepted approach to guide data analysis, and researchers use a wide variety of statistical methods and software tools.

View Article and Find Full Text PDF

We have studied the ground-state phase diagram of a two-leg spin ladder with anisotropic ferromagnetic leg couplings under the influence of a symmetry-breaking transverse magnetic field by the exact diagonalization technique. In the case of antiferromagnetic coupling between legs we identified two phase transitions in the plane of magnetic field versus interchain coupling strength. The first corresponds to the transition from the gapped rung-singlet phase to the gapped stripe-ferromagnetic phase.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionk399lc83063tt7lork5rc5ja1oremf0e): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once