Publications by authors named "Mahda Delshad"

In an era of rapid scientific advancement, gene therapy has emerged as a groundbreaking approach with the potential to revolutionize the treatment of a myriad of diseases and medical conditions. The trend of current clinical trials suggests that there is growing interest and investment in exploring gene therapy as a viable treatment option. In 2023, a significant milestone was achieved with the approval of seven gene therapies by the Food and Drug Administration (FDA).

View Article and Find Full Text PDF
Article Synopsis
  • This study examines how BiS@BSA nanoparticles function as radiosensitizers to enhance the bystander effect in non-irradiated lung cells during radiotherapy.
  • Lung carcinoma cells were irradiated with x-ray photons, and their conditioned medium was tested on human lung fibroblast cells to assess the impact of these nanoparticles.
  • Results showed that at a lower radiation dose (2 Gy), the nanoparticles significantly increased cell death in bystander cells, but this effect diminished at higher doses (8 Gy), suggesting limitations in their use at elevated radiation levels.
View Article and Find Full Text PDF

Immune thrombocytopenia (ITP) is an autoimmune disorder that causes a significant reduction in peripheral blood platelet count. Fortunately, due to an increased understanding of ITP, there have been significant improvements in the diagnosis and treatment of these patients. Over the past decade, there have been a variety of proven therapeutic options available for ITP patients, including intravenous immunoglobulins (IVIG), Rituximab, corticosteroids, and thrombopoietin receptor agonists (TPO-RAs).

View Article and Find Full Text PDF

In the Modern era, immune checkpoint inhibitors (ICIs) have been the cornerstone of success in the treatment of several malignancies. Despite remarkable therapeutic advances, complex matrix together with significant molecular and immunological differences have led to conflicting outcomes of ICI therapy in gastrointestinal (GI) cancers. As far we are aware, to date, there has been no study to confirm the robustness of existing data, and this study is the first umbrella review to provide a more comprehensive picture about ICIs' efficacy and safety in GI malignancies.

View Article and Find Full Text PDF

The phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway regulates proliferation, survival and metabolism, and its dysregulation is one of the most frequent oncogenic events across human malignancies. Over the last two decades, there has been significant focus on the clinical development of PI3K pathway inhibitors. More than 40 different inhibitors of this axis have reached various stages of clinical trials, but only a few of them have been approved by the Food and Drug Administration (FDA) for cancer treatment.

View Article and Find Full Text PDF

Background: Although pioglitazone, a well-known anti-diabetic agent, has recently established itself as a pillar of cancer treatment, its therapeutic value could be attenuated by the aberrant activation of the PI3K/Akt pathway.

Aim: To evaluate whether the PI3K/Akt suppression in leukemic cells could potentiate the anti-leukemic effects of pioglitazone.

Methods: To assess the anti-leukemic effects of PI3K/Akt inhibitors on anti-leukemic effects of pioglitazone, we used MTT and trypan blue assays.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the outbreak of coronavirus disease 2019 (COVID-19), has shown a vast range of clinical manifestations from asymptomatic to life-threatening symptoms. To figure out the cause of this heterogeneity, studies demonstrated the trace of genetic diversities whether in the hosts or the virus itself. With this regard, this review provides a comprehensive overview of how host genetic such as those related to the entry of the virus, the immune-related genes, gender-related genes, disease-related genes, and also host epigenetic could influence the severity of COVID-19.

View Article and Find Full Text PDF

Despite endorsed and exponential research to improve diagnostic and therapeutic strategies, efforts have not yet converted into a better prospect for patients infected with the novel coronavirus (2019nCoV), and still, the name of SARS-CoV-2 is coupled with numerous unanswered questions. One of these questions is concerning how this respiratory virus reduces the number of platelets (PLTs)? The results of laboratory examinations showed that about a quarter of COVID-19 cases experience thrombocytopenia, and more remarkably, about half of these patients succumb to the infection due to coagulopathy. These findings have positioned PLTs as a pillar in the management as well as stratifying COVID-19 patients; however, not all the physicians came into a consensus about the prognostic value of these cells.

View Article and Find Full Text PDF

The incidence of the novel coronavirus disease (COVID-19) outbreak caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has brought daunting complications for people as well as physicians around the world. An ever-increasing number of studies investigating the characteristics of the disease, day by day, is shedding light on a new feature of the virus with the hope that eventually these efforts lead to the proper treatment. SARS-CoV-2 activates antiviral immune responses, but in addition may overproduce pro-inflammatory cytokines, causing uncontrolled inflammatory responses in patients with severe COVID-19.

View Article and Find Full Text PDF

The latest molecular investigations leading to the discovery of the brand-new mechanisms associated to immortalized nature of cancer cells have questioned the efficacy of the conventional therapies and have increased the demand for more influential approaches, especially in the context of synergistic strategies. In an effort to enhance the effectiveness of acute promyelocytic leukemia (APL) treatment and to investigate the potential therapeutic value of Phosphoinositide 3-kinase (PI3K) inhibition synergism with chemotherapy, we designed experiments to evaluate the effect of Arsenic trioxide (ATO) in combination with BKM120 for the treatment of APL-derived NB4 cells. The results of the present study highlighted the favorable outcome of the PI3K inhibition using BKM120 in potentiating the anti-cancer effect of ATO, while reducing its cytotoxic concentration.

View Article and Find Full Text PDF

The intertwining between cancer pathogenesis and perturbation of multitude signaling pathways ushered the cancer therapeutic approaches into an unbounded route of targeted therapies. For the nonce and among the plethora of promising inhibitors, intense interest has focused on small molecules targeting different component of PI3K axis. Intrigued by the constant activation of PI3K in leukemia, this study aimed to investigate the effects of BKM120, as the excelled member of pan PI3K inhibitors, in a panel of hematologic malignant cell lines.

View Article and Find Full Text PDF

Complex interplay of intracellular signaling networks, spanning from the extracellular environment to the nucleus, orchestrate normal cell growth and survival. Dysregulation of such signals contributes to malignant transformation, thereby giving the cancer cells a survival advantage, but also could be exploited for new anticancer interventions. The aim of this study was to investigate the effects of pan class-I PI3K inhibitor NVP-BKM120 on two distinct acute leukemia cell lines, NB4 (with mutant p53) and Nalm-6 (with wild-type p53).

View Article and Find Full Text PDF