Increasing nicotinamide adenine dinucleotide (NAD) availability has been proposed as a therapeutic approach to prevent neurodegeneration in amyotrophic lateral sclerosis (ALS). Accordingly, NAD precursor supplementation appears to exert neuroprotective effects in ALS patients and mouse models. The mechanisms mediating neuroprotection remain uncertain but could involve changes in multiple cell types.
View Article and Find Full Text PDFInflammaging, the steady development of the inflammatory state over age is an attributable characteristic of aging that potentiates the initiation of pathogenesis in many age-related disorders (ARDs) including neurodegenerative diseases, arthritis, cancer, atherosclerosis, type 2 diabetes, and osteoporosis. Inflammaging is characterized by subclinical chronic, low grade, steady inflammatory states and is considered a crucial underlying cause behind the high mortality and morbidity rate associated with ARDs. Although a coherent set of studies detailed the underlying pathomechanisms of inflammaging, the potential benefits from non-toxic nutrients from natural and synthetic sources in modulating or delaying inflammaging processes was not discussed.
View Article and Find Full Text PDFLewy bodies that contain aggregated α-synuclein in dopamine neurons are the main culprit for neurodegeneration in Parkinson's disease. However, mitochondrial dysfunction has a well-established and prominent role in the pathogenesis of Parkinson's disease. The exact mechanism by which α-synuclein causes dopamine neuronal loss is unclear.
View Article and Find Full Text PDFIn response to diverse pathogenic and danger signals, the cytosolic activation of the NLRP3 (NOD-, LRR-, and pyrin domain-containing (3)) inflammasome complex is a critical event in the maturation and release of some inflammatory cytokines in the state of an inflammatory response. After activation of the NLRP3 inflammasome, a series of cellular events occurs, including caspase 1-mediated proteolytic cleavage and maturation of the IL-1β and IL-18, followed by pyroptotic cell death. Therefore, the NLRP3 inflammasome has become a prime target for the resolution of many inflammatory disorders.
View Article and Find Full Text PDFThe proton-activated G protein-coupled receptor (GPCR) 4 (GPR4) is constitutively active at physiological pH, and GPR4 knockout protected dopaminergic neurons from caspase-dependent mitochondria-associated apoptosis. This study explored the role of GPR4 in a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated mouse model of Parkinson's disease (PD). In mice, subchronic MPTP administration causes oxidative stress-induced apoptosis in the dopaminergic neurons of the substantia nigra pars compacta (SNpc), resulting in motor deficits.
View Article and Find Full Text PDFGeneral control non-depressible 5 (GCN5) or lysine acetyltransferase 2A (KAT2A) is one of the most highly studied histone acetyltransferases. It acts as both histone acetyltransferase (HAT) and lysine acetyltransferase (KAT). As an HAT it plays a pivotal role in the epigenetic landscape and chromatin modification.
View Article and Find Full Text PDF(LO) BLUME from the genus (Lauraceae) is a medicinal herb traditionally used in Southeast Asian countries. Indigenously, extracts of different parts of the plant have been used to improve blood circulation and treat allergy, inflammation, rheumatism, and liver diseases. LO is a rich source of therapeutically beneficial antioxidative phytochemicals, such as flavonoids, butenolides, lignans and neolignans.
View Article and Find Full Text PDFIn Parkinson's disease, mitochondrial oxidative stress-mediated apoptosis is a major cause of dopaminergic neuronal loss in the substantia nigra (SN). G protein-coupled receptor 4 (GPR4), previously recognised as an orphan G protein coupled-receptor (GPCR), has recently been claimed as a member of the group of proton-activated GPCRs. Its activity in neuronal apoptosis, however, remains undefined.
View Article and Find Full Text PDFEthnopharmacological Relevance: Panax ginseng C.A. Meyer (Araliaceae), has been used in traditional medicine for preventive and therapeutic purposes in Asian countries.
View Article and Find Full Text PDFExcessive activation of microglia and subsequent release of proinflammatory cytokines play a crucial role in neuroinflammation and neurodegeneration in Parkinson's disease (PD). Components of the nucleotide-binding oligomerization domain and leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome complex, leucine-rich-repeat- and pyrin-domain-containing 3, caspase-1, and apoptosis-associated speck-like protein containing a CARD, are highly expressed in activated microglia in PD patient brains. Findings suggest that neurotoxins, aggregation of α-synuclein, mitochondrial reactive oxygen species, and disrupted mitophagy are the key regulators of microglial leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome activation and release of interleukin-1β and interleukin-18 caspase-1-mediated pyroptotic cell death in the substantia nigra of the brain.
View Article and Find Full Text PDFEthnopharmacological Relevance: Chrysanthemum indicum (C. indicum), a perennial plant, has long been used to treat inflammation-related disorders, such as pneumonia, hypertension, gastritis, and gastroenteritis.
Aim Of The Study: The inhibitory effect of C.
Front Cell Neurosci
August 2018
Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with impairment of cognition, memory deficits and behavioral abnormalities. Accumulation of amyloid beta (Aβ) is a characteristic hallmark of AD. Microglia express several GPCRs, which, upon activation by modulators, mediate microglial activation and polarization phenotype.
View Article and Find Full Text PDF