In this research, the one-step synthesis of novel porphyrin-based nanocomposites was performed easily using a photochemical under visible light illumination strategy. As a result, the focus of this research is on synthesizing and using decorated ZnTPP (zinc(II)tetrakis(4-phenyl)porphyrin) nanoparticles with Ag, Ag/AgCl/Cu, and Au/Ag/AgCl nanostructures as antibacterial agents. Initially, ZnTPP NPs were synthesized as a result of the self-assembly of ZnTPP.
View Article and Find Full Text PDFHerein, a highly porous bimetal-organic framework (bi-MOF) based on cobalt and nickel was successfully in situ grown on organoclay (OC) clusters by solvothermal method. Accordingly, the hierarchical porous CoNi-MOF/OC composite with a superior specific surface area of 2046 m/g and a large pore volume of 0.763 cm/g was obtained, which facilitated the adsorption of organic dyes.
View Article and Find Full Text PDFThis study focuses on synthesizing novel nanocomposites, zinc(II)tetrakis(4-phenyl)porphyrin/Cu nanoparticles (ZnTPP/Cu-NPs),with antibacterial activity, fabricated through a single-step green procedure. In this regard, the self-assembly of ZnTPP was carried out through an acid-base neutralization method to prepare ZnTPP nanoparticles. Then, the copper nanoparticles (Cu-NPs) were grown on ZnTPP nanoparticles through a visible-light irradiated photochemical procedure in the absence and presence of polyacrylic acid (PAA) as a modulator.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are well-known porous crystalline materials that have been used for the removal of organic pollutants from wastewater. To enhance the adsorption performance of these adsorbents and facilitate their recycling process, we propose a hybrid composite of an MXene/metal-organic framework (MXOF) decorated on a hierarchical and self-supported porous three-dimensional (3D) printed lattice structure (3D-MXOF). In this design, the porous MXOF composite extremely enhanced the specific surface area and synergistically promoted the dye removal efficiency of 3D-printed lattices.
View Article and Find Full Text PDFIn this study, zinc oxide and silver and copper-doped zinc oxide nanorods were synthesized by a simple template-free precipitation technique. In addition, meso-tetrakis-(4-sulfonatophenyl) porphyrin (TPPS) was prepared and immobilized on ZnO nanorods (TPPS/ZnO). The synthesized photocatalysts were characterized by various techniques such as X-ray powder diffraction, scanning electron microscopy, UV-visible spectroscopy, diffuse reflectance spectroscopy, and Fourier transform Infrared spectroscopy.
View Article and Find Full Text PDFIn this study, a magnetic metal-organic framework (MMOF) was synthesized and post-modified with poly(propyleneimine) dendrimer to fabricate a novel functional porous nanocomposite for adsorption and recovery of palladium (Pd(II)) from aqueous solution. The morphological and structural characteristics of the prepared material were identified by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmet-Teller (BET) isotherm, and vibrating sample magnetometer (VSM). The results confirmed the successful synthesis and post-modification of MMOF.
View Article and Find Full Text PDFJ Environ Health Sci Eng
June 2021
In this study, zinc oxide nanorods, co-doped with iron and silver, were synthesized in a co-precipitation method. Its properties were determined using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Field Emission Scanning Electron Microscopy (FE-SEM), Brunauer-Emmett-Teller (BET), Dynamic light scattering (DLS) and X-ray photoelectron spectroscopy (XPS) analysis. The results of FE-SEM and TEM showed that zinc oxide nanoparticles synthesized and co-doped with iron and silver were formed as separate nanorods.
View Article and Find Full Text PDFHerein, a magnetic zirconium-based metal-organic framework nanocomposite was synthesized by a simple solvothermal method and used as an adsorbent for the removal of direct and acid dyes from aqueous solution. To enhance its adsorption performance, poly(propyleneimine) dendrimer was used to functionalize the as-synthesized magnetic porous nanocomposite. The dendrimer-functionalized magnetic nanocomposite was characterized by field-emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption/desorption isotherms, and vibration sample magnetometer.
View Article and Find Full Text PDFObviously, delivery of the medications to the brain is more difficult than other tissues due to the existence of a strong obstacle, which is called blood-brain barrier (BBB). Because of the lipophilic nature of this barrier, it would be a complex (and in many cases impossible) process to cross the medications with hydrophilic behavior from BBB and deliver them to the brain. Thus, novel intricate drug-carriers in nano scales have been recently developed and suitably applied for this purpose.
View Article and Find Full Text PDFIn this research, dipeptide (his--alanine) and porphyrin derivatives were choosen for comparing chelating ability of toxic metals such as Al, Cu, Hg and Pb. The reason for choosing these two compounds is that both of them are naturally present in biological systems and comparison of chelating ability of these two compounds has not yet been done. Synthesis and comparison of kinetic study of dipeptide (his--alanine), meso-tetrakis(4-trimethylanilinium) porphyrin (TAPP) and Tetrakis(4-sulfonatophenyl)porphyrin (TPPS) were carried out by our team.
View Article and Find Full Text PDFIn this study, zinc oxide (ZnO) nanorods have been synthesized using a simple template-free precipitation technique and deposited on glass substrate. The meso-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) has been synthesized and then immobilized on the surface of ZnO nanorods to prepare an organic/inorganic composite. The samples were characterized by various techniques such as X-ray diffraction, diffuse reflectance spectra, Fourier transform-infrared spectroscopy and scanning electron microscopy.
View Article and Find Full Text PDF