Dearomatization through photocatalytic oxidation is a swiftly rising phenolic compounds removal technology that works at trifling operations requirements with a special emphasis on the generation of nontoxic products. The study aims to develop a LaVO/MCM-48 nanocomposite that was prepared via a hydrothermally approach assisting the employment of an MCM-48 matrix, which was then utilized for phenol degradation processes. Various techniques including UV-Vis DRS, FTIR, PL, Raman, TEM, and BET analyses are employed to characterize the developed photocatalyst.
View Article and Find Full Text PDFNovel AgVO/KIT-6 nanocomposite photocatalyst has been successfully fabricated by a newly-designed simple hard-template induction process, in which the particles of AgVO were grown on the KIT-6 surface and inside the porous framework of the silica matrix. The developed porous framework nanocomposite was characterized by several techniques including N-Physiosorption analysis. The obtained nanocomposite revealed a high surface area (273.
View Article and Find Full Text PDFDynamical coupling with high-quality factor resonators is essential in a wide variety of hybrid quantum systems such as circuit quantum electrodynamics and opto/electromechanical systems. Nuclear spins in solids have a long relaxation time and thus have the potential to be implemented into quantum memories and sensors. However, state manipulation of nuclear spins requires high-magnetic fields, which is incompatible with state-of-the-art quantum hybrid systems based on superconducting microwave resonators.
View Article and Find Full Text PDFThe high-quality-factor mechanical resonator in electromechanical systems has facilitated dynamic control of phonons via parametric nonlinear processes and paved the development of mechanical logic-elements. However, the narrow spectral bandwidth of the resonating element constrains the available nonlinear phenomena thus limiting the functionality of the device as well as the switching speeds. Here we have developed phonon waveguides, with a two-octave-wide phonon transmission band, in which mechanical four-wave-like mixing is demonstrated that enables the frequency of phonon waves to be converted over 1 MHz.
View Article and Find Full Text PDFSolving intractable mathematical problems in simulators composed of atoms, ions, photons, or electrons has recently emerged as a subject of intense interest. We extend this concept to phonons that are localized in spectrally pure resonances in an electromechanical system that enables their interactions to be exquisitely fashioned via electrical means. We harness this platform to emulate the Ising Hamiltonian whose spin 1/2 particles are replicated by the phase bistable vibrations from the parametric resonances of multiple modes.
View Article and Find Full Text PDFSemiconductor-based quantum structures integrated into mechanical resonators have emerged as a unique platform for generating entanglement between macroscopic phononic and mesocopic electronic degrees of freedom. A key challenge to realizing this is the ability to create and control the coupling between two vastly dissimilar systems. Here, such coupling is demonstrated in a hybrid device composed of a gate-defined quantum dot integrated into a piezoelectricity-based mechanical resonator enabling milli-Kelvin phonon states to be detected via charge fluctuations in the quantum dot.
View Article and Find Full Text PDFA micromechanical resonator embedded with a nanomechanical resonator is developed whose dynamics can be captured by the coupled-Van der Pol-Duffing equations. Activating the nanomechanical resonator can dispersively shift the micromechanical resonance by more than 100 times its bandwidth and concurrently increase its energy dissipation rate to the point where it can even be deactivated. The coupled-Van der Pol-Duffing equations also suggest the possibility of self-oscillations.
View Article and Find Full Text PDFAn electromechanical resonator is developed in which mechanical nonlinearities can be dynamically engineered to emulate the nondegenerate parametric down-conversion interaction. In this configuration, phonons are simultaneously generated in pairs in two macroscopic vibration modes, resulting in the amplification of their motion. In parallel, two-mode thermal squeezed states are also created, which exhibit fluctuations below the thermal motion of their constituent modes as well as harboring correlations between the modes that become almost perfect as their amplification is increased.
View Article and Find Full Text PDFNanoelectromechanical systems (NEMS), utilizing localized mechanical vibrations, have found application in sensors, signal processors and in the study of macroscopic quantum mechanics. The integration of multiple mechanical elements via electrical or optical means remains a challenge in the realization of NEMS circuits. Here, we develop a phonon waveguide using a one-dimensional array of suspended membranes that offers purely mechanical means to integrate isolated NEMS resonators.
View Article and Find Full Text PDFElectromechanical resonators have emerged as a versatile platform in which detectors with unprecedented sensitivities and quantum mechanics in a macroscopic context can be developed. These schemes invariably utilise a single resonator but increasingly the concept of an array of electromechanical resonators is promising a wealth of new possibilities. In spite of this, experimental realisations of such arrays have remained scarce due to the formidable challenges involved in their fabrication.
View Article and Find Full Text PDFAn electromechanical resonator harboring an atomlike spectrum of discrete mechanical vibrations, namely, phonon modes, has been developed. A purely mechanical three-mode system becomes available in the electromechanical atom in which the energy difference of the two higher modes is resonant with a long-lived lower mode. Our measurements reveal that even an incoherent input into the higher mode results in coherent emission in the lower mode that exhibits all the hallmarks of phonon lasing in a process that is reminiscent of Brillouin lasing.
View Article and Find Full Text PDFIn conventional computers, wiring between transistors is required to enable the execution of Boolean logic functions. This has resulted in processors in which billions of transistors are physically interconnected, which limits integration densities, gives rise to huge power consumption and restricts processing speeds. A method to eliminate wiring amongst transistors by condensing Boolean logic into a single active element is thus highly desirable.
View Article and Find Full Text PDFPhys Rev Lett
November 2010
We have measured the backaction of a dc superconducting quantum interference device (SQUID) position detector on an integrated 1 MHz flexural resonator. The frequency and quality factor of the micromechanical resonator can be tuned with bias current and applied magnetic flux. The backaction is caused by the Lorentz force due to the change in circulating current when the resonator displaces.
View Article and Find Full Text PDFThe Parametron was first proposed as a logic-processing system almost 50 years ago. In this approach the two stable phases of an excited harmonic oscillator provide the basis for logic operations. Computer architectures based on LC oscillators were developed for this approach, but high power consumption and difficulties with integration meant that the Parametron was rendered obsolete by the transistor.
View Article and Find Full Text PDFWe demonstrate how magnetically coupling a nanomechanical resonator to a double quantum dot confining two electrons can enable the manipulation of a single electron spin and the readout of the resonator's natural frequency. When the Larmor frequency matches the resonator frequency, the electron spin in one of the dots can be selectively and coherently flipped by the magnetized oscillator. By simultaneously measuring the charge state of the two-electron double quantum dots, this transition can be detected thus enabling the natural frequency and displacement of the mechanical oscillator to be determined.
View Article and Find Full Text PDFA thin layer of InNSb has been fabricated by low energy nitrogen implantation in the near-surface region of InSb. X-ray photoelectron spectroscopy indicates that nitrogen occupies approximately 6% of the anion lattice sites. High-resolution electron-energy-loss spectroscopy of the conduction band electron plasma reveals the absence of a depletion layer for this alloy, thus indicating that the Fermi level is located below the valence band maximum (VBM).
View Article and Find Full Text PDFThe electronic structure of clean InN(0001) surfaces has been investigated by high-resolution electron-energy-loss spectroscopy of the conduction band electron plasmon excitations. An intrinsic surface electron accumulation layer is found to exist and is explained in terms of a particularly low Gamma-point conduction band minimum in wurtzite InN. As a result, surface Fermi level pinning high in the conduction band in the vicinity of the Gamma point, but near the average midgap energy, produces charged donor-type surface states with associated downward band bending.
View Article and Find Full Text PDF