Social play is a dynamic behavior known to be sexually differentiated; in most species, males play more than females, a sex difference driven in large part by the medial amygdala (MeA). Despite the well-conserved nature of this sex difference and the importance of social play for appropriate maturation of brain and behavior, the full mechanism establishing the sex bias in play is unknown. Here, we explore "the transcriptome of playfulness" in the juvenile rat MeA, assessing differences in gene expression between high- and low-playing animals of both sexes via bulk RNA-sequencing.
View Article and Find Full Text PDFSynthetic opioids such as fentanyl contribute to the vast majority of opioid-related overdose deaths, but fentanyl use remains broadly understudied. Like other substances with misuse potential, opioids cause lasting molecular adaptations to brain reward circuits, including neurons in the ventral tegmental area (VTA). The VTA contains numerous cell types that play diverse roles in opioid use and relapse; however, it is unknown how fentanyl experience alters the transcriptional landscape in specific subtypes.
View Article and Find Full Text PDFThe ventral pallidum (VP) is a central hub in the reward circuitry with diverse projections that have different behavioral roles attributed mostly to the connectivity with the downstream target. However, different VP projections may represent, as in the striatum, separate neuronal populations that differ in more than just connectivity. In this study, we performed in mice of both sexes a multimodal dissection of four major projections of the VP-to the lateral hypothalamus (VP), ventral tegmental area (VP), lateral habenula (VP), and mediodorsal thalamus (VP)-with physiological, anatomical, genetic, and behavioral tools.
View Article and Find Full Text PDFSynthetic opioids such as fentanyl contribute to the vast majority of opioid-related overdose deaths, but fentanyl use remains broadly understudied. Like other substances with misuse potential, opioids cause lasting molecular adaptations to brain reward circuits, including neurons in the ventral tegmental area (VTA). The VTA contains numerous cell types that play diverse roles in opioid use and relapse, however it is unknown how fentanyl experience alters the transcriptional landscape in specific subtypes.
View Article and Find Full Text PDFWe explore the changes in chromatin accessibility and transcriptional programs for cochlear hair cell differentiation from postmitotic supporting cells using organoids from postnatal cochlea. The organoids contain cells with transcriptional signatures of differentiating vestibular and cochlear hair cells. Construction of trajectories identifies Lgr5+ cells as progenitors for hair cells, and the genomic data reveal gene regulatory networks leading to hair cells.
View Article and Find Full Text PDFUse of the synthetic opioid fentanyl increased ~300% in the last decade, including among women of reproductive ages. Adverse neonatal outcomes and long-term behavioral disruptions are associated with perinatal opioid exposure. Our previous work demonstrated that perinatal fentanyl exposed mice displayed enhanced negative affect and somatosensory circuit and behavioral disruptions during adolescence.
View Article and Find Full Text PDFAltered activity of the ventral pallidum (VP) underlies disrupted motivation in stress and drug exposure. The VP is a very heterogeneous structure composed of many neuron types with distinct physiological properties and projections. Neuronal PAS 1-positive (Npas1) VP neurons are thought to send projections to brain regions critical for motivational behavior.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
November 2021
Heterogeneous treatment effect (HTE) analysis focuses on examining varying treatment effects for individuals or subgroups in a population. For example, an HTE-informed understanding can critically guide physicians to individualize the medical treatment for a certain disease. However, HTE analysis has not been widely recognized and used, even given the explosive increase of data availability attributed to the arrival of the Big Data era.
View Article and Find Full Text PDFComplex diseases are mediated via transcriptional dysregulation in multiple tissues. Thus, knowing an individual's tissue-specific gene expression can provide critical information about her health. Unfortunately, for most tissues, the transcriptome cannot be obtained without invasive procedures.
View Article and Find Full Text PDFComplex age-associated phenotypes are caused, in part, by an interaction between an individual's genotype and age. The mechanisms governing such interactions are however not entirely understood. Here, we provide a novel transcriptional mechanism-based framework-SNiPage, to investigate such interactions, whereby a transcription factor (TF) whose expression changes with age (age-associated TF), binds to a polymorphic regulatory element in an allele-dependent fashion, rendering the target gene's expression dependent on both, the age and the genotype.
View Article and Find Full Text PDFAlternative splicing contributes to phenotypic diversity at multiple biological scales, and its dysregulation is implicated in both ageing and age-associated diseases in human. Cross-tissue variability in splicing further complicates its links to age-associated phenotypes and elucidating these links requires a comprehensive map of age-associated splicing changes across multiple tissues. Here, we generate such a map by analyzing ~8500 RNA-seq samples across 48 tissues in 544 individuals.
View Article and Find Full Text PDFIdiopathic dilated cardiomyopathy (DCM) is a complex disorder with a genetic and an environmental component involving multiple genes, many of which are yet to be discovered. We integrate genetic, epigenetic, transcriptomic, phenotypic, and evolutionary features into a method - Hridaya, to infer putative functional genes underlying DCM in a genome-wide fashion, using 213 human heart genomes and transcriptomes. Many genes identified by Hridaya are experimentally shown to cause cardiac complications.
View Article and Find Full Text PDF(HT) is a complex systemic disease involving transcriptional changes in multiple organs. Here we systematically investigate the pan-tissue transcriptional and genetic landscape of HT spanning dozens of tissues in hundreds of individuals. We find that in several tissues, previously identified HT-linked genes are dysregulated and the gene expression profile is predictive of HT.
View Article and Find Full Text PDFRecovery of sensory and motor functions following traumatic spinal cord injury (SCI) is dependent on injury severity. Here we identified 49 proteins from cerebrospinal fluid (CSF) of SCI patients, eight of which were differentially abundant among two severity groups of SCI. It was observed that the abundance profiles of these proteins change over a time period of days to months post SCI.
View Article and Find Full Text PDFIn a recent work (Basu et al., in EPL 105:28007, 2014) it was pointed out that the link-weight distribution of microRNA co-target network of a wide class of species are universal up to scaling. The number cell types, widely accepted as a measure of complexity, turns out to be proportional to these scale-factor.
View Article and Find Full Text PDFDisease-causing mutations usually change the interacting partners of mutant proteins. In this article, we propose that the biological consequences of mutation are directly related to the alteration of corresponding protein protein interaction networks (PPIN). Mutation of Huntingtin (HTT) which causes Huntington's disease (HD) and mutations to TP53 which is associated with different cancers are studied as two example cases.
View Article and Find Full Text PDFFixed-energy sandpiles with stochastic update rules are known to exhibit a nonequilibrium phase transition from an active phase into infinitely many absorbing states. Examples include the conserved Manna model, the conserved lattice gas, and the conserved threshold transfer process. It is believed that the transitions in these models belong to an autonomous universality class of nonequilibrium phase transitions, the so-called Manna class.
View Article and Find Full Text PDF