Many growth factors are intimately bound to the extracellular matrix, with regulated processing and release leading to cellular stimulation. Myostatin and GDF11 are closely related members of the TGFβ family whose activation requires two proteolytic cleavages to release the growth factor from the prodomain. Specific modulation of myostatin and GDF11 activity by targeting growth factor-receptor interactions has traditionally been challenging.
View Article and Find Full Text PDFRNA interference (RNAi) represents one of the most promising new frontiers in drug discovery. Breakthroughs in understanding RNA's extensive natural role in essential cellular processes have opened up the potential for a whole new class of drugs based on RNAi. Harnessing the natural process of RNAi, short, double-stranded RNA molecules are able to inhibit expression of genes in a sequence-specific manner.
View Article and Find Full Text PDFIn ventromedial cells of the developing CNS, Sonic hedgehog (Shh) has been shown to affect precursor proliferation, phenotype determination, and survival. Here we show that Shh and its receptor, Ptc-1, are expressed in the adult rat basal forebrain, and that Ptc-1 is expressed specifically by cholinergic neurons. In basal forebrain cultures, Shh was added alone and in combination with nerve growth factor (NGF), and the number of cholinergic neurons was determined by choline acetyltransferase (ChAT) immunocytochemistry.
View Article and Find Full Text PDFFibroblasts derived from the Rat2 parental cell line were genetically modified to express the cell-associated form of Sonic hedgehog (Shh) and then co-grafted along with E14 fetal ventral mesencephalon (VM) tissue into the denervated striatum of F344 rats; fetal VM grafts alone or co-grafts using the nonexpressing Rat2 fibroblasts served as controls. Seven weeks after grafting, co-grafts of fetal VM and fibroblasts expressing Shh (Rat2/Shh) contained significantly more tyrosine hydroxylase-positive (TH+) neurons than either the fetal VM grafts or co-grafts of fetal VM plus nonexpressing fibroblasts (Rat2). Despite a significantly higher yield of grafted TH+ neurons in the fetal VM + Rat2/Shh co-grafts than in either of the other two control groups, amphetamine-induced rotational behavior scores were not significantly different between any of the three treatment groups.
View Article and Find Full Text PDFSonic hedgehog (Shh), an axis-determining secreted protein, is expressed during early vertebrate embryogenesis in the notochord and ventral neural tube. In this site it plays a role in the phenotypic specification of ventral neurons along the length of the CNS. For example, Shh induces the differentiation of motor neurons in the spinal cord and dopaminergic neurons in the midbrain.
View Article and Find Full Text PDFSchwann cells proliferate, migrate, and act as sources of neurotrophic support during development and regeneration of peripheral nerves. Recent studies have demonstrated that neuregulins, a family of growth factors secreted by developing motor and peripheral neurons, influence Schwann cell development. In this study, we use three distinct assays to show that glial growth factor 2 (GGF2), a secreted neuregulin, exerts multiple effects on mature Schwann cells in vitro.
View Article and Find Full Text PDFGlial growth factors are proteins encoded by the neuregulin gene and are thought to signal via receptor tyrosine kinases. Many neuregulin gene products bind heparin, and we hypothesize that affinity for heparin may implicate cell surface heparan sulfate proteoglycans (HeSPGs) as co-receptors for the soluble neuregulin gene product, recombinant human glial growth factor 2 (rhGGF2). Using primary rat Schwann cell cultures, we show that exogenous heparin and heparan sulfate block rhGGF2-induced phosphorylation of putative neuregulin receptors, and block subsequent DNA synthesis; other glycosaminoglycans show no such effect.
View Article and Find Full Text PDFCold Spring Harb Symp Quant Biol
September 1997
L-14 is a divalent, lactosamine-binding lectin expressed in many vertebrate tissues. In the rat nervous system, L-14 expression has been observed previously in restricted neuronal subsets within the dorsal root ganglia and spinal cord. In this study we report that L-14 is expressed by nonneuronal cells in the rat olfactory nerve.
View Article and Find Full Text PDFThe olfactory epithelium (OE) is unique in the mammalian nervous system as a site of continual neurogenesis. Though many studies have described this process in vivo and olfactory neurogenesis can be demonstrated in vitro, the specific factors that modulate this process have not been defined. Noting the common ectodermal origin and structural similarity between the OE and epidermis, peptide factors known to modulate epidermal differentiation were tested in OE cultures.
View Article and Find Full Text PDFThy-1 is abundantly expressed in the vertebrate nervous system. Perturbation studies in vitro suggest that Thy-1 inhibits neurite outgrowth and stabilizes neuronal processes (N. K.
View Article and Find Full Text PDFThy-1 is a major cell surface protein anchored in the plasma membrane of neurons and lymphocytes by a covalent glyco-phosphatidyl-inositide linkage. Despite thorough characterization of the molecule's physicochemical properties, its biological function remains elusive. In this study we demonstrate that (i) monoclonal antibodies directed against Thy-1 are capable of enhancing neurite outgrowth from sympathetic neurons in culture, as well as stimulating the initiation of neurite sprouting from cultured adrenal chromaffin cells and PC12 cells.
View Article and Find Full Text PDFTo define further the molecules that control sympathoadrenal differentiation, we have investigated the effects of FGF, NGF, and glucocorticoid on cultured neonatal rat adrenal chromaffin cells. Basic FGF (bFGF), like NGF, induces cell division and neurite outgrowth from these cells. Dexamethasone inhibits neuronal differentiation but not proliferation induced by bFGF.
View Article and Find Full Text PDF