Introduction: Foot ulceration is one of the most severe and debilitating complications of diabetes, which leads to the cause of non-traumatic lower-extremity amputation in 15-24% of affected individuals. The healing of diabetic foot (DF) is a significant therapeutic problem due to complications from the multifactorial healing process. Electrospun nanofibrous scaffold loaded with various wound dressing materials has excellent wound healing properties due to its multifunctional action.
View Article and Find Full Text PDFBackground: Vinorelbine bitartrate (VRL) is an antimitotic agent approved by FDA for breast cancer and non-small cell lung cancer (NSCLC) in many countries. However, high aqueous solubility and thermo degradable nature of VRL limited the availability of marketed dosage forms.
Objectives: The current work is focused on the development of lipid based aqueous core nanocapsules which can encapsulate the hydrophilic VRL in the aqueous core of nanocapsules protected with a lipidic shell which will further provide a sustained release.
Surface and mechanical properties of the biomaterials are determinants of cellular responses. In our previous study, star-shaped poly(d,l-Lactide)-b-gelatin (ss-pLG) was reported for possessing improved cellular adhesion and proliferation. Here, we extended our investigation to establish the cellular compatibility of gelatin-grafted PDLLA with respect to mechanical properties of biological tissues.
View Article and Find Full Text PDFCatechin (CT) is natural molecule proved for antidiabetic activity. Clinical application of CT is highly restricted because of its low bioavailability and ineffectiveness in in vivo conditions. Therefore, the main objective of the present investigation was to formulate CT-loaded Eudragit RS 100 microparticles and evaluated for its potential against diabetes.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2016
The clinical application of trans resveratrol (RSV) in glioma treatment is largely limited because of its rapid metabolism, fast elimination from systemic circulation and low biological half life. Therefore, the objectives of this study were to enhance the circulation time, biological half life and passive brain targeting of RSV using d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) coated liposomes (RSV-TPGS-Lipo). In addition to basic liposomal characterizations, in vitro anticancer potential against C6 glioma cell lines and cellular internalization of liposomes were carried out by MTT assay and confocal laser scanning microscopy (CLSM), respectively.
View Article and Find Full Text PDF