Publications by authors named "Mahalingam Govindaraj"

Sorghum ( L. Moench) is the staple cereal and is the primary source of protein for millions of people in Asia and sub-Saharan Africa. Sorghum grain value has been increasing in tropical countries including India owing to its gluten-free nature, anti-oxidant properties and low glycemic index.

View Article and Find Full Text PDF

Rice is a highly consumed staple cereal cultivated predominantly in Asian countries, which share 90% of global rice production. Rice is a primary calorie provider for more than 3.5 billion people across the world.

View Article and Find Full Text PDF

Micronutrient malnutrition is a serious threat to the developing world's human population, which largely relies on a cereal-based diet that lacks diversity and micronutrients. Besides major cereals, millets represent the key sources of energy, protein, vitamins, and minerals for people residing in the dryland tropics and drought-prone areas of South Asia and sub-Saharan Africa. Millets serve as multi-purpose crops with several salient traits including tolerance to abiotic stresses, adaptation to diverse agro-ecologies, higher productivity in nutrient-poor soils, and rich nutritional characteristics.

View Article and Find Full Text PDF
Article Synopsis
  • Malnutrition imposes significant socio-economic costs at individual, community, and national levels, worsened by climate change's negative effects on food quality and agricultural productivity.
  • Prioritizing the development of nutrient-rich crops through biofortification—using genetic engineering or crossbreeding—can improve food quality.
  • Global efforts have resulted in the release of over 400 nutrient-dense cultivars, benefiting millions in developing regions, which could enhance nutrient absorption and support better human health through a deeper understanding of nutrient transport mechanisms.
View Article and Find Full Text PDF

Pearl millet is a crucial nutrient-rich staple food in Asia and Africa and adapted to the climate of semi-arid topics. Since the genomic resources in pearl millet are very limited, we have developed a brand-new mid-density 4K SNP panel and demonstrated its utility in genetic studies. A set of 4K SNPs were mined from 925 whole-genome sequences through a comprehensive in-silico pipeline.

View Article and Find Full Text PDF

Micronutrient malnutrition is a major challenge in Africa, where half a million children die each year because of lack of micronutrients in their food. Pearl millet is an important food and fodder crop for the people living in the Semi-Arid regions of West Africa. The present study was conducted to determine the stability, combining ability, and gene action conditions of the high level of Fe and Zn content in grain and selected agronomic traits.

View Article and Find Full Text PDF

Sorghum is a climate-resilient cereal and staple food crop for more than 200 million people in arid and semi-arid countries of Asia and Africa. Despite the economic importance, the productivity of sorghum in India is constrained by biotic and abiotic stresses such as incidences of shoot fly, grain mold and drought. Indian sorghum breeding focused on dual-purpose (grain and fodder), short-duration varieties with multiple resistance/tolerance to pests and diseases and improved nutritional quality (high protein, iron and zinc and low fat).

View Article and Find Full Text PDF

Pearl millet ( L.), an important source of iron (Fe) and zinc (Zn) for millions of families in dryland tropics, helps in eradicating micronutrient malnutrition. The crop is rich in Fe and Zn, therefore, identification of the key genes operating the mineral pathways is an important step to accelerate the development of biofortified cultivars.

View Article and Find Full Text PDF

Pearl millet is an important crop of the arid and semi-arid ecologies to sustain food and fodder production. The greater tolerance to drought stress attracts us to examine its cellular and molecular mechanisms via functional genomics approaches to augment the grain yield. Here, we studied the drought response of 48 inbreds representing four different maturity groups at the flowering stage.

View Article and Find Full Text PDF

Micronutrient deficiency is most prevalent in developing regions of the world, including Africa and Southeast Asia where pearl millet ( L.) is a major crop. Increasing essential minerals in pearl millet through biofortification could reduce malnutrition caused by deficiency.

View Article and Find Full Text PDF
Article Synopsis
  • * Pearl millet is a resilient crop that requires less water and energy, and it is packed with beneficial nutrients such as iron, zinc, and dietary fibers, earning its classification as a "nutri-cereal."
  • * Recent advancements in genetic and genomic resources for pearl millet, including various mapping populations and genetic markers, have enabled significant progress in understanding and enhancing grain micronutrient content.
View Article and Find Full Text PDF

Pearl millet is a predominant food and fodder crop in West Africa. This study was carried out to test the newly developed open-pollinated varieties (OPVs) for field performance and stability for grain yield, grain iron (Fe), and grain zinc (Zn) contents across 10 locations in West Africa (i.e.

View Article and Find Full Text PDF

Biofortification breeding for three important micronutrients for human health, namely, iron (Fe), zinc (Zn), and provitamin A (PVA), has gained momentum in recent years. HarvestPlus, along with its global consortium partners, enhances Fe, Zn, and PVA in staple crops. The strategic and applied research by HarvestPlus is driven by product-based impact pathway that integrates crop breeding, nutrition research, impact assessment, advocacy, and communication to implement country-specific crop delivery plans.

View Article and Find Full Text PDF

Sorghum is one of the staple crops for millions of people in Sub-Saharan Africa (SSA) and South Asia (SA). The future climate in these sorghum production regions is likely to have unexpected short or long episodes of drought and/or high temperature (HT), which can cause significant yield losses. Therefore, to achieve food and nutritional security, drought and HT stress tolerance ability in sorghum must be genetically improved.

View Article and Find Full Text PDF

The infection caused by grain mold in rainy season grown sorghum deteriorates the physical and chemical quality of the grain, which causes a reduction in grain size, blackening, and making them unfit for human consumption. Therefore, the breeding for grain mold resistance has become a necessity. Pedigree breeding has been widely used across the globe to tackle the problem of grain mold.

View Article and Find Full Text PDF

Intermittent drought and an incidence of grain mold disease are the two major constraints affecting sorghum production and productivity. The study aimed at developing drought-tolerant sorghum varieties possessing a high protein content and tolerance to grain mold with stable performance using additive main effects and multiplicative interaction (AMMI) and genotype and genotype × environment interaction (GGE) biplot methods. Systematic hybridization among the 11 superior landraces resulted in subsequent pedigree-based breeding and selection from 2010 to 2015 evolved 19 promising varieties of grains such as white, yellow, and brown pericarp grains.

View Article and Find Full Text PDF

Sorghum ( L.) is a staple food crops in the arid and rainfed production ecologies. Sorghum plays a critical role in resilient farming and is projected as a smart crop to overcome the food and nutritional insecurity in the developing world.

View Article and Find Full Text PDF

Pearl millet ( R. Br.) is an important staple and nutritious food crop in the semiarid and arid ecologies of South Asia (SA) and Sub-Saharan Africa (SSA).

View Article and Find Full Text PDF

The findings of this study suggest that the selected five strains of Streptomyces spp. could be used for biological control of charcoal rot disease in sorghum. Two strains each of Streptomyces albus (CAI-17 and KAI-27) and Streptomyces griseus (KAI-26 and MMA-32) and one strain of Streptomyces cavourensis (SAI-13) previously reported to have plant growth-promotion activity in chickpea, rice and sorghum were evaluated for their antagonistic potential against Macrophomina phaseolina, which causes charcoal rot in sorghum.

View Article and Find Full Text PDF