Arterial-venous malformations (AVMs) are direct connections between arteries and veins without an intervening capillary bed. Either familial inherited or sporadically occurring, localized pericytes (PCs) drop is among the AVMs' hallmarks. Whether impaired PC coverage triggers AVMs or it is a secondary event is unclear.
View Article and Find Full Text PDFGlioblastoma is the most aggressive brain tumor in adults. Treatment failure is predominantly caused by its high invasiveness and its ability to induce a supportive microenvironment. As part of this, a major role for tumor-associated macrophages/microglia (TAMs) in glioblastoma development was recognized.
View Article and Find Full Text PDFUnlabelled: Crossing the blood-brain barrier is a crucial, rate-limiting step of brain metastasis. Understanding of the mechanisms of cancer cell extravasation from brain microcapillaries is limited as the underlying cellular and molecular processes cannot be adequately investigated using in vitro models and endpoint in vivo experiments. Using ultrastructural and functional imaging, we demonstrate that dynamic changes of activated brain microcapillaries promote the mandatory first steps of brain colonization.
View Article and Find Full Text PDFDisruption of endothelial cell (ECs) and pericytes interactions results in vascular leakage in acute lung injury (ALI). However, molecular signals mediating EC-pericyte crosstalk have not been systemically investigated, and whether targeting such crosstalk could be adopted to combat ALI remains elusive. Using comparative genome-wide EC-pericyte crosstalk analysis of healthy and LPS-challenged lungs, we discovered that crosstalk between endothelial nitric oxide and pericyte soluble guanylate cyclase (NO-sGC) is impaired in ALI.
View Article and Find Full Text PDFPrimary tumors and distant site metastases form a bidirectionally communicating system. Yet, the molecular mechanisms of this crosstalk are poorly understood. Here, we identified the proteolytically cleaved fragments of angiopoietin-like 4 (ANGPTL4) as contextually active protumorigenic and antitumorigenic contributors in this communication ecosystem.
View Article and Find Full Text PDFBackground: A poorly functioning tumor vasculature is pro-oncogenic and may impede the delivery of therapeutics. Normalizing the vasculature, therefore, may be beneficial. We previously reported that the secreted glycoprotein leucine-rich α-2-glycoprotein 1 (LRG1) contributes to pathogenic neovascularization.
View Article and Find Full Text PDFThe gut has a specific vascular barrier that controls trafficking of antigens and microbiota into the bloodstream. However, the molecular mechanisms regulating the maintenance of this vascular barrier remain elusive. Here, we identified Caspase-8 as a pro-survival factor in mature intestinal endothelial cells that is required to actively maintain vascular homeostasis in the small intestine in an organ-specific manner.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
June 2022
Background: Arteriogenesis plays a critical role in maintaining adequate tissue blood supply and is related to a favorable prognosis in arterial occlusive diseases. Strategies aimed at promoting arteriogenesis have thus far not been successful because the factors involved in arteriogenesis remain incompletely understood. Previous studies suggest that evolutionarily conserved KANK4 (KN motif and ankyrin repeat domain-containing proteins 4) might involve in vertebrate vessel development.
View Article and Find Full Text PDFThe nuclear translocation and activity of the cotranscriptional activators YAP and TAZ (YAP/TAZ) in endothelial cells (ECs) are crucial during developmental angiogenesis. Here, we studied the role of YAP/TAZ signaling in ECs in tumor angiogenesis and found that the expression of and downstream target genes in ECs correlated with tumor vascularization in human colorectal carcinomas and skin melanoma. Treatment with the YAP/TAZ inhibitor verteporfin reduced vessel density and tumor progression in a mouse colorectal cancer (CRC) model.
View Article and Find Full Text PDFMetastasis is the primary cause of cancer-related mortality. Tumor cell interactions with cells of the vessel wall are decisive and potentially rate-limiting for metastasis. The molecular nature of this cross-talk is, beyond candidate gene approaches, hitherto poorly understood.
View Article and Find Full Text PDFHistorically, therapy of metastatic disease has essentially been limited to using strategies that were identified and established to shrink primary tumors. The limited efficacy of such treatments on overall patient survival stems from diverging intrinsic and extrinsic characteristics of a primary tumor and metastases originating therefrom. To develop better therapeutic strategies to treat metastatic disease, there is an urgent need to shift the paradigm in preclinical metastasis research by conceptualizing metastatic dissemination, colonization, and growth as spatiotemporally dynamic processes and identifying rate-limiting vulnerabilities of the metastatic cascade.
View Article and Find Full Text PDFRecent clinical and preclinical advances have highlighted the existence of a previously hypothesized lymphogenous route of metastasis. However, due to a lack of suitable preclinical modeling tools, its contribution to long-term disease outcome and relevance for therapy remain controversial. Here, we established a genetically engineered mouse model (GEMM) fragment-based tumor model uniquely sustaining a functional network of intratumoral lymphatics that facilitates seeding of fatal peripheral metastases.
View Article and Find Full Text PDFThe angiopoietin (Angpt)-TIE signaling pathway controls vascular maturation and maintains the quiescent phenotype of resting vasculature. The contextual agonistic and antagonistic Tie2 ligand ANGPT2 is believed to be exclusively produced by endothelial cells, disrupting constitutive ANGPT1-TIE2 signaling to destabilize the microvasculature during pathologic disorders like inflammation and cancer. However, scattered reports have also portrayed tumor cells as a source of ANGPT2.
View Article and Find Full Text PDFThe angiopoietin (Ang)-Tie pathway has been intensely pursued as candidate second-generation anti-angiogenic target. While much of the translational work has focused on the ligand Ang2, the clinical efficacy of Ang2-targeting drugs is limited and failed to improve patient survival. In turn, the orphan receptor Tie1 remains therapeutically unexplored, although its endothelial-specific genetic deletion has previously been shown to result in a strong reduction in metastatic growth.
View Article and Find Full Text PDFLooking beyond tumor angiogenesis, the past decade has witnessed a fundamental change of paradigm with the discovery that the vascular endothelium does not just respond to exogenous cytokines, but exerts active "angiocrine" gatekeeper roles, controlling their microenvironment in an instructive manner. While vascular niches host disseminated cancer cells and promote their stemness, endothelial cell-derived angiocrine signals orchestrate a favorable immune milieu to facilitate metastatic growth. Here, we discuss recent advances in the field of tumor microenvironment research and propose angiocrine signals as promising targets of future mechanism-driven antimetastatic therapies, which may prove useful to synergistically combine with chemotherapy and immunotherapy.
View Article and Find Full Text PDFNeoangiogenesis plays a key role in diverse pathophysiological conditions, including liver regeneration. Yet, the source of new endothelial cells (ECs) remains elusive. By analyzing the regeneration of the liver vasculature in irradiation-based myeloablative and nonmyeloablative bone marrow transplantation mouse models, we discovered that neoangiogenesis in livers with intact endothelium was solely mediated by proliferation of resident ECs.
View Article and Find Full Text PDFThe endothelial tyrosine kinase receptor Tie1 remains poorly characterized, largely owing to its orphan receptor status. Global Tie1 inactivation causes late embryonic lethality, thereby reflecting its importance during development. Tie1 also plays pivotal roles during pathologies such as atherosclerosis and tumorigenesis.
View Article and Find Full Text PDFOncology research in humans is limited to analytical and observational studies for obvious ethical reasons, with therapy-focused clinical trials being the one exception to this rule. Preclinical mouse tumour models therefore serve as an indispensable intermediate experimental model system bridging more reductionist in vitro research with human studies. Based on a systematic survey of preclinical mouse tumour studies published in eight scientific journals in 2016, this Analysis provides an overview of how contemporary preclinical mouse tumour biology research is pursued.
View Article and Find Full Text PDFBreast tumor recurrence and metastasis represent the main causes of cancer-related death in women, and treatments are still lacking. Here, we define the lipogenic enzyme acetyl-CoA carboxylase (ACC) 1 as a key player in breast cancer metastasis. ACC1 phosphorylation was increased in invading cells both in murine and human breast cancer, serving as a point of convergence for leptin and transforming growth factor (TGF) β signaling.
View Article and Find Full Text PDFParkinson disease (PD) is a neurodegenerative disorder with loss of dopaminergic neurons of the brain, which results in insufficient synthesis and action of dopamine. Metastasis-associated protein 1 (MTA1) is an upstream modulator of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, and hence MTA1 plays a significant role in PD pathogenesis. To impart functional and clinical significance to MTA1, we analyzed MTA1 and TH levels in the substantia nigra region of a large cohort of human brain tissue samples by Western blotting, quantitative PCR, and immunohistochemistry.
View Article and Find Full Text PDF