an opportunistic human pathogenic bacterium, exhibits resistance to conventional antibiotics by exploiting its quorum sensing mechanism to regulate virulence factor expression. In light of this, disrupting the quorum sensing mechanism presents a promising avenue for treating infections caused by this pathogen. The study focused on using the cytoplasmic quorum sensing receptor CviR from as a model target to identify novel quorum sensing inhibitors from through computational approaches.
View Article and Find Full Text PDFThe escalating global food demand driven by a gradually expanding human population necessitates strategies to improve agricultural productivity favorably and mitigate crop yield loss caused by various stressors (biotic and abiotic). Biotic stresses are caused by phytopathogens, pests, and nematodes, along with abiotic stresses like salt, heat, drought, and heavy metals, which pose serious risks to food security and agricultural productivity. Presently, the traditional methods relying on synthetic chemicals have led to ecological damage through unintended impacts on non-target organisms and the emergence of microbes that are resistant to them.
View Article and Find Full Text PDFThe present study explores the epidermal growth factor receptor (EGFR) tyrosine kinase inhibition efficacy of secondary metabolites in Trichoderma spp. through molecular docking, molecular dynamics (MD) simulation and MM-PBSA approach. The result of molecular docking confirmed that out of 200 metabolites screened, three metabolites such as Harzianelactone A, Pretrichodermamide G and Aspochalasin M, potentially bound with the active binding site of EGFR tyrosine kinase domain(PDB ID: 1M17) with a threshold docking score of ≤- 9.
View Article and Find Full Text PDFZinc oxide nanoparticles (ZnO-NPs) synthesized through biogenic methods have gained significant attention due to their unique properties and potential applications in various biological fields. Unlike chemical and physical approaches that may lead to environmental pollution, biogenic synthesis offers a greener alternative, minimizing hazardous environmental impacts. During biogenic synthesis, metabolites present in the biotic sources (like plants and microbes) serve as bio-reductants and bio-stabilizers.
View Article and Find Full Text PDFAn opportunistic human pathogenic bacterium, Chromobacterium violaceum resists the potency of most antibiotics by exploiting the quorum sensing system within their community to control virulence factor expression. Therefore, blocking the quorum sensing mechanism could help to treat several infectious caused by this organism. The quorum sensing receptor (CviR) of C.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2023
Through a powerful and modest closed system Microwave hydrothermal process, a methodological analysis is made in the rational synthesis of the reduced graphene oxide-induced p-AgO/n-MoO (RGAM) heterostructures. These have strong p-n junction heterostructures with considerable electron-hole recombination functioning as solar catalysts. The enhanced photocatalytic activity through the plasmonic step scheme (S-scheme mechanism) describes the effective charge recombination process.
View Article and Find Full Text PDFDuring the present century, plant-based zinc oxide nanoparticles (ZnO-NPs) are exploited extensively for their vast biological properties due to their unique characteristic features and eco-friendly nature. Diabetes is one of the fast-growing human diseases/abnormalities worldwide, and the need for new/ novel antiglycation products is the need of the hour. The study deals with the phyto-fabrication of ZnO-NPs from Boerhaavia erecta, a medicinally important plant, and to evaluate their antioxidant and antiglycation ability in vitro.
View Article and Find Full Text PDFMolecules
February 2023
In the present study, the binding affinity of 52 bioactive secondary metabolites from towards the anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein (PDB: 2W3L) structure was identified by using in silico molecular docking and molecular dynamics simulation. The molecular docking results demonstrated that the binding energies of docked compounds with Bcl-2 protein ranged from -5.3 kcal/mol to -10.
View Article and Find Full Text PDFSci Rep
February 2023
Cladosporium spp. have been reported for their great diversity of secondary metabolites which represent as a prominent base material for verifying the biological activities. Several bioactive compounds which have antimicrobial, cytotoxic, quorum sensing inhibitory and phytotoxic activities have been isolated from Cladosporium species.
View Article and Find Full Text PDFMolecules
November 2022
The ever-expanding pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has gained attention as COVID-19 and caused an emergency in public health to an unmatched level to date. However, the treatments used are the only options; currently, no effective and licensed medications are available to combat disease transmission, necessitating further research. In the present study, an in silico-based virtual screening of anti-HIV bioactive compounds from medicinal plants was carried out through molecular docking against the main protease (M) (PDB: 6LU7) of SARS-CoV-2, which is a key enzyme responsible for virus replication.
View Article and Find Full Text PDFPLoS One
October 2022
Breast cancer is the second most common malignancy in females worldwide and poses a great challenge that necessitates the identification of novel therapeutic agents from several sources. This research aimed to study the molecular docking and molecular dynamics simulations of four proteins (such as PDB: 6CBZ, 1FDW, 5GWK and 2WTT) with the selected phytochemicals from Withania somnifera to identify the potential inhibitors for breast cancer. The molecular docking result showed that among 44 compounds, two of them, Ashwagandhanolide and Withanolide sulfoxide have the potential to inhibit estrogen receptor alpha (ERα), 17-beta-hydroxysteroid -dehydrogenase type 1 (17β-HSD1), topoisomerase II alpha (TOP2A) and p73 tetramerization domain that are expressed during breast cancer.
View Article and Find Full Text PDFAntioxidants (Basel)
September 2022
Background: Coronavirus disease 2019 (COVID-19) has caused a global pandemic with a high mortality and morbidity rate worldwide. The COVID-19 vaccines that are currently in development or already approved are expected to provide at least some protection against the emerging variants of the virus, but the mutations may reduce the efficacy of the existing vaccines. Purified phytochemicals from medicinal plants provide a helpful framework for discovering new therapeutic leads as they have long been employed in traditional medicine to treat many disorders.
View Article and Find Full Text PDFSoil salinity stress has become a serious roadblock for food production worldwide since it is one of the key factors affecting agricultural productivity. Salinity and drought are predicted to cause considerable loss of crops. To deal with this difficult situation, a variety of strategies have been developed, including plant breeding, plant genetic engineering, and a wide range of agricultural practices, including the use of plant growth-promoting rhizobacteria (PGPR) and seed biopriming techniques, to improve the plants' defenses against salinity stress, resulting in higher crop yields to meet future human food demand.
View Article and Find Full Text PDFZinc oxide nanoparticles have become one of the most popular metal oxide nanoparticles and recently emerged as a promising potential candidate in the fields of optical, electrical, food packaging, and biomedical applications due to their biocompatibility, low toxicity, and low cost. They have a role in cell apoptosis, as they trigger excessive reactive oxygen species (ROS) formation and release zinc ions (Zn) that induce cell death. The zinc oxide nanoparticles synthesized using the plant extracts appear to be simple, safer, sustainable, and more environmentally friendly compared to the physical and chemical routes.
View Article and Find Full Text PDFRhizosphere-resident fungi that are helpful to plants are generally termed as 'plant growth promoting fungi' (PGPF). These fungi are one of the chief sources of the biotic inducers known to give their host plants numerous advantages, and they play a vital role in sustainable agriculture. Today's biggest challenge is to satisfy the rising demand for crop protection and crop yield without harming the natural ecosystem.
View Article and Find Full Text PDFThe study was undertaken to investigate the antioxidant, genotoxic, and cytotoxic potentialities of phyto-fabricated zinc oxide nanoparticles (ZnO-NPs) from (L.) Ker Gawl. aqueous leaf extract.
View Article and Find Full Text PDFIn this work, we aimed to synthesize zinc oxide nanoparticles (ZnONPs) using an aqueous extract of leaves (CAE) at room temperature without the provision of additional surfactants or capping agents. The formation of as-obtained ZnONPs was analyzed by UV-visible (ultraviolet) absorption and emission spectroscopy, X-ray photoemission spectroscopy (XPS), X-ray diffraction analysis (XRD), energy dispersive X-ray diffraction (EDX), thermogravimetric analysis/differential thermal analysis (TGA-DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The XRD results reflect the wurtzite structure of as-prepared ZnONPs, which produced diffraction patterns showing hexagonal phases.
View Article and Find Full Text PDFplant extract mediated propellant chemistry route was used for the green synthesis of zinc oxide nanoparticles. Prepared samples were confirmed for their nano regime using advanced characterization techniques such as powder X-ray diffraction and microscopic techniques such as scanning electron microscopy and transmission electron microscopy. The energy band gap of the green synthesized zinc oxide (ZnO)-nanoparticles (NPs) were found between 3.
View Article and Find Full Text PDFThe development of advanced glycation end-products (AGEs) inhibitors is considered to have therapeutic potential in diabetic complications inhibiting the loss of the biomolecular function. In the present study, zinc oxide nanoparticles (ZnO-NPs) were synthesized from aqueous leaf extract of and were characterized by various techniques such as ultraviolet (UV)-Vis spectroscopy, Powder X-Ray Diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Further, the inhibition of AGEs formation after exposure to ZnO-NPs was investigated by in-vitro, in-vivo, and molecular docking studies.
View Article and Find Full Text PDFIn the current study, a total of 70 fungi were isolated from the rhizosphere soil of chilli collected from six different districts of south Karnataka, India. All the rhizospheric fungi were evaluated for its antagonistic nature against -the causal agent of anthracnose disease-and eight isolates were found positive. The antagonistic fungi were further characterized for the production of plant growth-promoting traits wherein five isolates were recorded positive for all the traits tested and were also positive for root colonization.
View Article and Find Full Text PDF