Recognized as a common microvascular complication of diabetes mellitus (DM), diabetic nephropathy (DN) is the principal cause of chronic end-stage renal disease (ESRD). Patients with diabetes have an approximately 25% risk of developing progressive renal disease. The underlying principles of DN control targets the dual outcomes of blood glucose regulation through sodium glucose cotransporter 2 (SGLT 2) blockade and hypertension management through renin-angiotensin-aldosterone inhibition.
View Article and Find Full Text PDFColorectal cancer (CRC) is among the most prevalent gastrointestinal cancers of epithelial origin worldwide, with over 2 million cases detected every year. Emerging evidence suggests a significant increase in the levels of inflammatory and stress-related markers in patients with CRC, indicating that oxidative stress and lipid peroxidation may influence signalling cascades involved in the progression of the disease. However, the precise molecular and cellular basis underlying CRC and their modulations during bioactive compound exposure have not yet been deciphered.
View Article and Find Full Text PDFAnticancer Agents Med Chem
August 2022
Adaptogens were initially recognized as stress-resistance inducing compounds. Recent studies reveal that adaptogens are pleiotropically-acting chemical constituents that can be isolated from traditional herbs. They are gaining increasing attention in cancer chemotherapy.
View Article and Find Full Text PDFDiabetol Metab Syndr
January 2019
Background: Diabetic nephropathy (DN) or diabetic kidney disease refers to the deterioration of kidney function seen in chronic type 1 and type 2 diabetes mellitus patients. The progression of the disease is known to occur in a series of stages and is linked to glycemic and blood pressure control. However, despite aggressive blood sugar control the prevalence of chronic kidney disease (CKD) in diabetic patients has not witnessed any decrease in the last two decades; which has lead to identification of additional factors in its progression.
View Article and Find Full Text PDFViable cancer cells expose elevated levels of phosphatidylserine (PS) on the exoplasmic face of the plasma membrane. However, the mechanisms leading to elevated PS exposure in viable cancer cells have not been defined. We previously showed that externalized PS may be used to monitor, target and kill tumor cells.
View Article and Find Full Text PDFBackground: High toxicity, morbidity and secondary malignancy render chemotherapy of neuroblastoma inefficient, prompting the search for novel compounds. Nanovesicles offer great promise in imaging and treatment of cancer. SapC-DOPS, a stable nanovesicle formed from the lysosomal protein saposin C and dioleoylphosphatidylserine possess strong affinity for abundantly exposed surface phosphatidylserine on cancer cells.
View Article and Find Full Text PDFBrain tumors, either primary (e.g., glioblastoma multiforme) or secondary (metastatic), remain among the most intractable and fatal of all cancers.
View Article and Find Full Text PDF