Milk Fat Globules with their unique interfacial structure and membrane composition are a key nutritional source for mammalian infants, however, there is a limited understanding of the dynamics of fat digestion in these structures. Lipid digestion is an interfacial process involving interactions of enzymes and bile salts with the interface of suspended lipid droplets in an aqueous environment. In this study, we have developed an electron paramagnetic resonance spectroscopy approach to evaluate real time dynamics of milk fat globules interfacial structure during simulated intestinal digestion.
View Article and Find Full Text PDFThe stability and dispersibility of lipid-soluble bioactives in food systems are often modified via encapsulation in oil in water emulsions and lipid or protein-based nanoparticles. These encapsulation approaches frequently require the addition of surfactants/emulsifiers, sacrificial antioxidants, and high-energy methods to create the dispersed phase and stabilize encapsulated compounds. In contrast to conventional encapsulation approaches, this study evaluates pre-formed and naturally occurring lipid structures, milk fat globules (MFGs), for the encapsulation of a model lipid-soluble bioactive, curcumin.
View Article and Find Full Text PDF