Saudi J Biol Sci
January 2020
Lynch syndrome is inherited in an autosomal dominant mode. Lynch syndrome is caused by impairment of one or more of the various genes (most frequently MLH1 and MSH2) involved in mismatch repair. In this study, whole genome comparative genomic hybridization array (array CGH) based genomic analysis was performed on twelve Saudi Lynch syndrome patients.
View Article and Find Full Text PDFCongenital heart defects (CHDs) are the most common birth defects in neonatal life. CHDs could be presented as isolated defects or associated with developmental delay (DD) and/or other congenital malformations. A small proportion of cardiac defects are caused by chromosomal abnormalities or single gene defects; however, in a large proportion of cases no genetic diagnosis could be achieved by clinical examination and conventional genetic analysis.
View Article and Find Full Text PDFTo study the genomics/genetic factors associated with recurrent spontaneous abortion (RSA), as ∼50% of RSA are unexplained. However, chromosome abnormalities have been reported to play major role in RSA. We performed whole genome array-CGH based genomic analysis of forty four Saudi RSA patients to identify potential molecular and chromosomal abnormalities.
View Article and Find Full Text PDFO1 Regulation of genes by telomere length over long distances Jerry W. Shay O2 The microtubule destabilizer KIF2A regulates the postnatal establishment of neuronal circuits in addition to prenatal cell survival, cell migration, and axon elongation, and its loss leading to malformation of cortical development and severe epilepsy Noriko Homma, Ruyun Zhou, Muhammad Imran Naseer, Adeel G. Chaudhary, Mohammed Al-Qahtani, Nobutaka Hirokawa O3 Integration of metagenomics and metabolomics in gut microbiome research Maryam Goudarzi, Albert J.
View Article and Find Full Text PDFBackground: Epilepsy is genetically complex neurological disorder affecting millions of people of different age groups varying in its type and severity. Copy number variants (CNVs) are key players in the genetic etiology of numerous neurodevelopmental disorders and prior findings also revealed that chromosomal aberrations are more susceptible against the pathogenesis of epilepsy. Novel technologies, such as array comparative genomic hybridization (array-CGH), may help to uncover the pathogenic CNVs in patients with epilepsy.
View Article and Find Full Text PDFBackground: Fragile X syndrome, the most common form of inherited intellectual disability, is caused by expansion of CGG trinucleotide repeat at the 5' untranslated region of the FMR1 gene at Xq27. In affected individuals, the CGG repeat expansion leads to hypermethylation and the gene is transcriptionally inactive. Our aim was to identify fragile X syndrome among children with intellectual disability in Saudi Arabia.
View Article and Find Full Text PDF