Publications by authors named "Maha Abdeladhim"

Introduction: Cutaneous leishmaniasis is a neglected vector-borne parasitic disease prevalent in 92 countries with approximately one million new infections annually. Interactions between vector saliva and the human host alter the response to infection and outcome of disease.

Methods: To characterize the human immunological responses developed against saliva of , a vector, we repeatedly exposed the arms of 14 healthy U.

View Article and Find Full Text PDF
Article Synopsis
  • *Current control methods focus on managing sand fly populations and their reservoirs due to challenges like drug resistance and the toxicity of existing treatments.
  • *Researchers sequenced the genomes of two key sand fly species to better understand their biology and genetic diversity, paving the way for improved strategies to combat the spread of Leishmania parasites.
View Article and Find Full Text PDF

Regulatory T cells (Tregs) are the master regulators of immunity and they have been implicated in different disease states such as infection, autoimmunity and cancer. Since their discovery, many studies have focused on understanding Treg development, differentiation, and function. While there are many players in the generation and function of truly suppressive Tregs, the role of checkpoint pathways in these processes have been studied extensively.

View Article and Find Full Text PDF

Sand flies are hematophagous insects responsible for the transmission of vector-borne diseases to humans. Prominent among these diseases is Leishmaniasis that affects the skin and mucous surfaces and organs such as liver and spleen. Importantly, the function of blood-sucking arthropods goes beyond merely transporting pathogens.

View Article and Find Full Text PDF

A possible etiological link between the onset of endemic pemphigus in Tunisia and bites of Phlebotomus papatasi, the vector of zoonotic cutaneous leishmaniasis, has been previously suggested. We hypothesized that the immunodominant P. papatasi salivary protein PpSP32 binds to desmogleins 1 and 3 (Dsg1 and Dsg3), triggering loss of tolerance to these pemphigus target autoantigens.

View Article and Find Full Text PDF

Individuals exposed to sand fly bites develop humoral and cellular immune responses to sand fly salivary proteins. Moreover, cellular immunity to saliva or distinct salivary proteins protects against leishmaniasis in various animal models. In Tbilisi, Georgia, an endemic area for visceral leishmaniasis (VL), sand flies are abundant for a short period of ≤3 months.

View Article and Find Full Text PDF

Allergy is a major public health concern, the main treatment for which is symptomatic relief with anti-inflammatory drugs. A key clinical challenge is to induce specific tolerance in order to control allergen-specific memory B and T cells, and specifically block effector cell responses. Our lab recently developed antigen-specific regulatory T-cell (Treg) therapies as a treatment for adverse responses.

View Article and Find Full Text PDF

Nowadays, there is no available vaccine for human leishmaniasis. Animal experiments demonstrate that pre-exposure to sand fly saliva confers protection against leishmaniasis. Our preceding work in humans indicates that Phlebotomus papatasi saliva induces the production of IL-10 by CD8+ T lymphocytes.

View Article and Find Full Text PDF

Hemophilia A is a bleeding disorder caused by mutations in the gene encoding factor VIII (FVIII), a cofactor protein that is essential for normal blood clotting. Approximately, 1 in 3 patients with severe hemophilia A produce neutralizing antibodies (inhibitors) that block its biologic function in the clotting cascade. Current efforts to eliminate inhibitors consist of repeated FVIII injections under what is termed an "ITI" protocol (Immune Tolerance Induction).

View Article and Find Full Text PDF

Background: Immunity to the sand fly salivary protein SALO (Salivary Anticomplement of Lutzomyia longipalpis) protected hamsters against Leishmania infantum and L. braziliensis infection and, more recently, a vaccine combination of a genetically modified Leishmania with SALO conferred strong protection against L. donovani infection.

View Article and Find Full Text PDF

Background: Sand fly saliva has been shown to have proteins with potent biological activities, salivary proteins that can be used as biomarkers of vector exposure, and salivary proteins that are candidate vaccines against different forms of leishmaniasis. Sand fly salivary gland transcriptomic approach has contributed significantly to the identification and characterization of many of these salivary proteins from important Leishmania vectors; however, sand fly vectors in some regions of the world are still neglected, as Bichromomyia olmeca (formerly known as Lutzomyia olmeca olmeca), a proven vector of Leishmania mexicana in Mexico and Central America. Despite the importance of this vector in transmitting Leishmania parasite in Mesoamerica there is no information on the repertoire of B.

View Article and Find Full Text PDF

The etiology of human autoimmune diseases in general remains largely unknown, although the genetic and environmental interplay may be relevant. This applies to the autoimmune diseases of the skin such as the pemphigus phenotypes and others. In this group, there is an endemic form of pemphigus foliaceus (also known as fogo selvagem [FS]) in which the pathogenic IgG4 autoantibody response to the self-antigen desmoglein 1 (Dsg1) cross-reacts with the LJM11 sand fly salivary gland Ag.

View Article and Find Full Text PDF

Blood-feeding insects inject potent salivary components including complement inhibitors into their host's skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor.

View Article and Find Full Text PDF

Background: Visceral leishmaniasis (VL) is a neglected tropical disease and is fatal if untreated. There is no vaccine available against leishmaniasis. The majority of patients with cutaneous leishmaniasis (CL) or VL develop a long-term protective immunity after cure from infection, which indicates that development of an effective vaccine against leishmaniasis is possible.

View Article and Find Full Text PDF

Background: During a blood meal, female sand flies, vectors of Leishmania parasites, inject saliva into the host skin. Sand fly saliva is composed of a large variety of components that exert different pharmacological activities facilitating the acquisition of blood by the insect. Importantly, proteins present in saliva are able to elicit the production of specific anti-saliva antibodies, which can be used as markers for exposure to vector bites.

View Article and Find Full Text PDF

Currently, there are no commercially available human vaccines against leishmaniasis. In rodents, cellular immunity to salivary proteins of sand fly vectors is associated to protection against leishmaniasis, making them worthy targets for further exploration as vaccines. We demonstrate that nonhuman primates (NHP) exposed to Phlebotomus duboscqi uninfected sand fly bites or immunized with salivary protein PdSP15 are protected against cutaneous leishmaniasis initiated by infected bites.

View Article and Find Full Text PDF

Background: The sandfly Phlebotomus papatasi is the vector of Leishmania major, the main causative agent of Old World cutaneous leishmaniasis (CL) in Saudi Arabia. Sandflies inject saliva while feeding and the salivary protein PpSP32 was previously shown to be a biomarker for bite exposure. Here we used recombinant PpSP32 to evaluate human exposure to Ph.

View Article and Find Full Text PDF

Sand flies are blood-feeding insects and vectors of the Leishmania parasite. For many years, saliva of these insects has represented a gold mine for the discovery of molecules with anti-hemostatic and immuno-modulatory activities. Furthermore, proteins in sand fly saliva have been shown to be a potential vaccine against leishmaniasis and also markers of vector exposure.

View Article and Find Full Text PDF

The present study was designed to determine the immunosuppressive effects of carbosulfan (CB) and their relationship with an increased formation of reactive oxygen species in rat. Further, we aimed to evaluate the protective effects of N-acetyl-cysteine (NAC) against immunopathological changes induced by CB. Carbosulfan (25 mg/kg) and NAC (2 g/l) were given daily to rats during 30 days, via oral gavage and drinking water, respectively.

View Article and Find Full Text PDF

Background: Zoonotic cutaneous leishmaniasis (ZCL) due to Leishmania major is highly prevalent in Tunisia and is transmitted by a hematophagous vector Phlebotomus papatasi (P. papatasi). While probing for a blood meal, the sand fly injects saliva into the host's skin, which contains a variety of compounds that are highly immunogenic.

View Article and Find Full Text PDF