Publications by authors named "Maha A Aldahlan"

Values that are too large or small enough can be found in many data sets. Therefore, the estimator can yield ambiguous findings if several of the incredible deals are picked for the sample. When such extreme values occur, we propose improved estimators to determine the finite population means using double sampling based on probability proportional to size sampling (PPS).

View Article and Find Full Text PDF

A new three-parameter cubic transmuted power distribution is proposed using the cubic rank transformation. The density and hazard functions of the new distribution provide great flexibility. Some mathematical properties of the new model such as quantile function, moments, dispersion index, mean residual life, and order statistics are derived.

View Article and Find Full Text PDF

The influence of the chemical interaction and dynamic micropolar convective heat transfer flow of Casson fluid caused by a moving wedge immersed in a porous material was explored. The Joule heating owing to magnetized porous matrix heating was also deliberated. The mathematical formulation for mass conservation, momentum, energy, and concentration profiles was expressed in the form of partial differential equations.

View Article and Find Full Text PDF

As a matter of fact, the statistical literature lacks of general family of distributions based on the truncated Cauchy distribution. In this paper, such a family is proposed, called the truncated Cauchy power-G family. It stands out for the originality of the involved functions, its overall simplicity and its desirable properties for modelling purposes.

View Article and Find Full Text PDF

In this paper, we introduce the exponentiated power generalized Weibull power series (EPGWPS) family of distributions, obtained by compounding the exponentiated power generalized Weibull and power series distributions. By construction, the new family contains a myriad of new flexible lifetime distributions having strong physical interpretations (lifetime system, biological studies…). We discuss the characteristics and properties of the EPGWPS family, including its probability density and hazard rate functions, quantiles, moments, incomplete moments, skewness and kurtosis.

View Article and Find Full Text PDF