Publications by authors named "Magotoshi Morii"

Prostate cancer is an androgen-dependent malignancy that presents a marked treatment challenge, particularly after progression to the castration-resistant stage. Traditional treatments such as androgen deprivation therapy often lead to resistance, necessitating novel therapeutic approaches. Previous studies have indicated that some of the azolato-bridged dinuclear platinum(II) complexes (general formula: [{-Pt(NH)}(μ-OH)(μ-azolato)]X, where azolato = pyrazolato, 1,2,3-triazolato, or tetrazolato and X = nitrate or perchlorate) inhibit androgen receptor (AR) signaling.

View Article and Find Full Text PDF

Litttle is known about the function of aquaporin (AQP) water channels in human gastric cancer. In the upper or middle part of human stomach, we found that expression level of AQP5 protein in intestinal type of adenocarcinoma was significantly higher than that in accompanying normal mucosa. AQP5 was localized in the apical membrane of the cancer cells.

View Article and Find Full Text PDF

We studied whether K+-Cl(-) cotransporters (KCCs) are involved in gastric HCl secretion. We found that KCC4 is expressed in the gastric parietal cells more abundantly at the luminal region of the gland than at the basal region. KCC4 was found in the stimulation-associated vesicles (SAV) derived from the apical canalicular membrane but not in the intracellular tubulovesicles, whereas H+,K+-ATPase was expressed in both of them.

View Article and Find Full Text PDF

Gastric H(+),K(+)-ATPase is shown to transport 2 mol of H(+)/mol of ATP hydrolysis in isolated hog gastric vesicles. We studied whether the H(+) transport mechanism is due to charge transfer and/or transfer of hydronium ion (H(3)O(+)). From transport of [(18)O]H(2)O, 1.

View Article and Find Full Text PDF

Leucines were mutated within the sequence L311 ILGYTWLE319 of the extracellular loop flanking the third (M3) and fourth (M4) transmembrane segments (M3/M4 loop) of the Torpedo Na+,K+-ATPase alpha-subunit. Replacement of Leu311 with Glu resulted in a considerable loss of Na+,K+-ATPase activity. Replacement of Leu313 with Glu shifted the equilibrium of E1P and E2P toward E1P and reduced the rate of the E1P to E2P transition.

View Article and Find Full Text PDF

Gastric parietal cells migrate from the luminal to the basal region of the gland, and they gradually lose acid secretory activity. So far, distribution and function of K+-Cl(-) cotransporters (KCCs) in gastric parietal cells have not been reported. We found that KCC3a but not KCC3b mRNA was highly expressed, and KCC3a protein was predominantly expressed in the basolateral membrane of rat gastric parietal cells located in the luminal region of the glands.

View Article and Find Full Text PDF

[(Dihydroindenyl)oxy]acetic acid (DIOA) has been used as a potent inhibitor of K+ -Cl- cotransporter (IC(50)=10 microM). Here we found that DIOA inhibited activities of P-type ATPases such as dog kidney Na+,K+-ATPase (IC(50)=53 microM), hog gastric H+,K+-ATPase (IC(50)=97 microM) and rabbit muscle Ca(2+)-ATPase (IC(50)=127 microM). In the membrane preparation of the LLC-PK1 cells stably expressing rabbit gastric H+,K+-ATPase, DIOA inhibited activities of the endogenous Na+,K+-ATPase (IC(50)=95 microM) and the exogenous H+,K+-ATPase (IC(50)=75 microM).

View Article and Find Full Text PDF

Tumor growth of colorectal cancers accompanies upregulation of cyclooxygenase-2, which catalyzes a conversion step from arachidonic acid to prostaglandin H(2) (PGH(2)). Here, we compared the expression levels of thromboxane synthase (TXS), which catalyzes the conversion of PGH(2) to thromboxane A(2) (TXA(2)), between human colorectal cancer tissue and its accompanying normal mucosa. It was found that TXS protein was consistently upregulated in the cancer tissues from different patients.

View Article and Find Full Text PDF

The gastric H+, K+-ATPase is a proton pump that is responsible for gastric acid secretion and that actively transports protons and K+ ions in opposite directions to generate in excess of a million-fold gradient across the membrane under physiological conditions. This pump is also a target molecule of proton pump inhibitors which are used for the clinical treatment of hyperacidity. In this review, we wish to summarize the molecular regulation of this pump based on mutational studies, particularly those used for the identification of binding sites for cations and specific inhibitors.

View Article and Find Full Text PDF

2-Methyl-8-(phenylmethoxy)imidazo[1,2-a]pyridine-3-acetonitrile (SCH 28080) is a reversible inhibitor specific for the gastric proton pump. The inhibition pattern is competitive with K(+). Here we studied the binding sites of this inhibitor on the putative three-dimensional structure of the gastric proton pump alpha-subunit that was constructed by homology modeling based on the structure of sarcoplasmic reticulum Ca(2+) pump.

View Article and Find Full Text PDF

We have shown previously that the G protein-coupled production of superoxide anion (O2-) leads to closure of small-conductance Cl- channels (0.3-0.4 pS) in the basolateral membrane of rabbit parietal cells.

View Article and Find Full Text PDF

The gastric proton pump, H(+),K(+)-ATPase, consists of the catalytic alpha-subunit and the noncatalytic beta-subunit. These subunits are assembled in the endoplasmic reticulum (ER) and leave the ER to reach to the cell surface as a functional holoenzyme. We studied the quantity control mechanism of the H(+),K(+)-ATPase in the ER by using a heterologous expression system in human embryonic kidney 293 cells.

View Article and Find Full Text PDF